Comparison of Ordinary Least Square (OLS) with Two-Step Robust Weight Least Square (TSRWLS) in Estimating the Parameters of the Multiple Linear Regression Model with Heteroscedastic and Outliers in the Response Variable

Assist. Prof. Ghufran I. Kamal
ghufranka62@gmail.com

Shaimaa I. Khalil AL-Obaidi
shaimaa595@yahoo.com

Statistics Department - College of Administration and Economics - University of Baghdad
Baghdad – Iraq

Received 24/8/2020
Accepted 1/9/2020

Abstract: The main objective of this research is to use some methods to estimate the parameters of the multiple linear regression model. The first method is the classical method, the method of ordinary least square (OLS) and the second method is the Two-Step Robust Weighted Least Squares (TSRWLS). To show the effect of each of them in estimating the parameters in light of the problem of heterogeneity of error variance and the appearance of anomalies in the data that suffer from these two problems together. This was done using Monte Carlo simulation and through the Mean Absolute Percentage Error (MAPE) comparison parameter, and applied it to real data in the field of water hardness taken from the Municipality of Baghdad-Baghdad Water Directorate-Department of Quality Control on 2019. It has been found that the Two-Step Robust Weighted Least Squares method is best method for addressing the problem of heterogeneity of error variance without being affected by anomalies values.

Keywords: The classical methods, Two-Step Robust Weighted Least Squares, Heterogeneity, monte-carlo simulation, The Mean Absolute Percentage Error (MAPE), Outliers.
المقدمة

إن أموزج تحليل الإحصائي الخاص المتبقي من الأساليب الإحصائية الأكثر انتشارًا واستعمالًا لتحليل العلاقة بين متغير الاستجابة والمتغيرات التوصيفية، يتيح عن هذه العلاقة مفيدة إجراء التحليل والاستنتاجات التي يمكن التوصل إليها في نهائهما. ولذلك عند طريقة تحليل عالم الإحصائيات، كان لبيتين أو متوسطي، وبمعايير مبرهنة واتشر (OLS) وهي الطريقة البديلة (WLS)، وهي الطريقة البديلة لـ (OLS)، هواء أطلق. وعندما تتحقق هذه المشاركين، وتشير هذه الطريقة للفصل الإحصائي، فإن هذه الطريقة تقوم عبر تسليط في حالة عدم تحققيحة دون المتغيرات الخاصة بذات الامتداد التي يمكن تحليلها على تقييم البديل (OLS)، والتي من خلالها يتم معالجة مشكلة عدم تجاوز تباين الخطأ التوصيل إلى تقييمات جديدة، نتائج تدريبات الأمثل والمكافحة التي تراقب الأداء والمكاسب، وتشير في جميع حالات، ظهرت مشكلة جديدة المثيرة للاهتمام، ومتطلبة، حيث بكمها أو صغرها سينبغل القياس الشاذة، وعندما أيضاً أُصدِرَت هذه الطريقة لمعاناة عدم تجاوز تباين الخطأ تشمل بشكل أصغر (Outliers)، وتشير الطرق المستلمس مع دورات كابلات، وتؤثر على كفاءة التقديرات للكمية، لاتشادي مشكلة عدم تجاوز تباين الخطأ في حالة وجود القيم الشاذة كان لابد من استعمال طرق تحليل القياسي للمشكلات معاً

هذا الهدف من هذا الدراس هو تحليل القياسي لضعو القياسات التي تجري على بعض القياسي المكونات التي توجه الباكلين والمكاسب في مختلف القياسات الحسابية والمحلية، ونما مشكلة عدم تجاوز تباين الخطأ القياس الشاذة (المتباين)، والتوصيل إلى تقييمات لمعالجة الإحصائيات المعقدة الذي يعاني من تلك المشكلات، علا، والتوصيل إلى أفضل التقييمات لـ (OLS) ومع ذلك من خلال (طرقة حسابية) تحليل مشكلة عدم تجاوز تباين الخطأ بدون التأثير صغرها أو وجود القياس الشاذة والمكاسب بين هذه الطرق لأولى اعتراف أفضل، وأننا نستعمل محاكاة موني كارلو. ومن خلال عرض المقارنة منخفض القياسي الشاذة (العنصر الثلاثي) (MAPE) ومن هذه الطرق استعملت مشكلة عدم تجاوز تباين الخطأ، ويظهر الفرض فيما كالآتي

Heteroskedasticity Problem

1. مشكلة عدم تجاوز تباين الخطأ الشاذ

إحدى الفرضيات الأساسية والتي تعتبر ركيزة من الركائز التي يقوم عليها القياس الشاذ (المتباين والباكلين) هو تجاوز تباين الخطأ (ثبات التباين لحد الخطأ)، ويصبح الفرض فيما كالآتي

\[E(U_i^2) = \sigma_u^2 \]

وفي القياس الشاذ:

\[E(U_i U_j) = \sigma_u^2 \ln |i-j| \]

ولكن ما يحدث في الواقع الطبيعي والذي يواجهه الباحثين هو عدم تحقق الشاذ الشاذ، أي يصبح التباين غير ثابت لجميع المشاهدات، وهذا يظهر جلياً في القياس الرئيسي لوصف القياسات الشاذ والتصغير المشترك (القياس الشاذ) والذي يصبح متضمن قيم مختلفة له، ويكون الفرض هو كالآتي

\[E(U_i U_j) \neq \sigma_u^2 \ln |i-j| \]

هو ما يطلق عليه (Heteroskedasticity)

والمقصود هو عدم تجاوز تباين الخطأ الشاذ أو ما يسمى احياناً بال (Cross–Sectional) أو الابطال (Disturbances terms).

وتظاهر أغلب هذه المشكلات بصورة خاصة في الدراسات التي تعتمد على القياسات المتباينة (data) وكما إن كل مشاهدة لها يمكن اختلاف كبيراً في القياسات التوصيفية الامور الذي يؤثر على مشاهدات متغير

وتلك هذه الطرق واستعمال التحليل تستعمل للكشف عن مشكلة عدم تجاوز التباين للخطأ:

- طرق تحليلية:
 - اختبار بارك، كليمان.

The Outliers

3. القياس الشاذ

إن وجود شاذ يجري في القياس الشاذ كان أصلًا على تسمية مشاهدات أو أسماء الشاذ، وهي تعتبر واحدة من المشكلات الإحصائية المعروفة لدى الباحثين، فإن أغلب المعاني ووسائل الإحصائيات المعروفة لدى الإحصائيين مثل (الختام الشاذ، المانوال، الانحراف المعياري...) تكون حاسمة لغة تجاوز القياس الشاذ، والتي تكون ذات أثر واضح على تغيير نتائج التحليل المعتمد ويتكون هذا التغيير كبيراً إذاً عدد هذه القياس، وعلى الرغم من هذا لا يمكن اسقاطها أو اهمالها لمجرد كونها

76
قيمة شائكة، لأنها يمكن أن تكون الأكثر اثارة للاهتمام ومن المهم التحري عنها ودراسة وتلخيص قب الخلاف القرار، وفي العديد من البحوث والدراسات نوقشت هذه المشكلة لأهميتها، وإن البيانات التي لا تحتوي على شواط تعتبر حالة استثنائية في الواقع العلمي والتطبيقي، لأنها تحدث بسبب اختفاء شائكة غير مقصودة مثل اختفاء (القياس، التسجيل، المعافاة)، أو تحدث بسبب (ظروف طبيعية أو حدوث أحداث أو كوارث ...). ويشمل عام فائدة من ذلك بياناً ما تحدث بسبب اختفاء أو أنك في شائكة (منطقة)، ومن هذه الأهمية تم تطبيقه إلى العديد من التصنيفات التي تخص المشاكل الشائكة لمحاولة تفسيرها وفهمها وتذكر بعضها منها: [8][13][14].

4. اختبار الكشف عن مشكلة عدم تجانس تباين الخطأ بوجود القيم الشائكة

Heteroscedasticity Problem Test With The Outlier Values

. Modification of the Goldfeld –Quandt Test

اختبار (كود فلد كواند) المعالج

ان اختبار التقلدية الكشف عن وجود مشكلة عدم تجانس تباين الخطأ، تكون غير كافية عندما تحتوي البيانات على مشاكل شائكة، لذا أصبح من الضروري تعديل اختيار يتأثر كثيرا. عندما تتضمن البيانات على تلك المشاكل، إذا اقترح Goldfeld-Quandt واخر، اختبارًا جديدًا يعد عقدة تم تعديل اختيار (Habshah) اختبارات الصبرة المشائكة التي تتأثر بالمشاكل الشائكة ثم تستند هذه المواقع بدائل حسبية أي تحفيزه بمتعمق طريقة Goldfeld-Quandt اختبارات الصبرة المشائكة (LTS) التي تكون أكثر حساسية في التشكيل في ظل وجود النسب المختلفة للقيم الشائكة، ويعتبر هذا الاختبار كولد فلد كواند المعالج (MGQ).

الخطوة الأولى: ترتيب قيم المشاكل تصاعديًا أو تنزيلياً بناءً على قيمة مصادر الاختلاف.

الخطوة الثانية: حذف وحدات المشاكل الوسطية (c) ، حيث يتم تحديد واستبعاد (c) من مشاهدات المركز في حدد ربع المشاهدات الكلية:

\[C \approx \frac{1}{4} \cdot n \]

الخطوة الثالثة: استعمال أحد الأساليب الإعدادية (المساحة الصغرى السعودية (LS)) (Rousseeuw and Leroy) (LS) Trimmed Squared Method) () (LTS) Trimmed Squared Method) أو (F) مقدمة من قبل (Box Plot) (Box Plot) أو (Box Plot).

الخطوة الرابعة: استخراج القيم المحددة، أي ايجاد القيم المحددة للمجموعات الأولى والثانية على التوالي، ومن بعد ذلك حذف القيم الشائكة الموجودة في البيانات لكل القيمة الجزئية ثم حساب الوسط من خلال (MSDR) (Median of the Squared Deletion Residuals) (MSDR) (Median of the Squared Deletion Residuals) (MSDR) (Median of the Squared Deletion Residuals) (MSDR) (Median of the Squared Deletion Residuals)

\[MGQ = \frac{MSDR_2}{MSDR_1} \]

حيث هي الوسطين لقيم مربعات القياس على التوالي، لأصغر وأكبر تباين لمجموعه على التوالي، تحت اقتراع التزويج الطبيعي الحساسية (F) تتب تزويج (MGQ) بدرجات الحرية كل من البسط والمقام (F) للمحاسبة أقل من قيمة (F) النموذج في الجداول الاجتماعية.
Robustness Notion

5. مفهوم الحصاية "فكرة الحصاية ضد الانحرافات" هو المفهوم العام للحصاية، والذي تم استعماله لأول مرة من قبل الباحث (Box 1953) وعرفوا "بأنها تدل على قوة التقدير والحصول على أفضل النتائج في حالة عدم توفر الشروط الأساسية للظروف المعتددة في التقدير"، ومن ثم قدمت أول نظرية عامة في مقال بعنوان "التقدير الحصاية لمعادلة الموقع" للباحث (Huber 1964).[9]

وكلمة الحصاية تتعلق بالمدارات التي لا تتأثر في حالة عدم تحقق الظروف الأساسية، وتكون قوة تلك المدارات نقاط الانحراف العالية والمتميزة.

ويمكن تعريف نقطة انحراف بالمدارة بدلاً من مقيم حسابي جزء مقام لثقوث البيانات والذي يمكن ان يزدم المدار بالكامل إذا صار من ذلك الجزء، ويصبح بعدها التقدير غير الفائدة. ويعتبر ذلك بأنه مقياس القوة التي كلها كانت نقطة انحراف أكبر كان المدار الفعلى وأطلق عليه بالمدارات الحصاية.[17].

\[b_{ols} = (X'X)^{-1}X'Y \] (2)

Robust Estimation Method

6. طرق التقدير الحصاية

6.1. المربعات الصغرى الاعتيادية (OLS)

هي أحدى أهم الطرق وأكثرها استعمالاً عند تحقق جميع فرضياتها، ولكن عند عدم تحقق واحدة أو أكثر من تلك الفرضيات فأنها تستدف كافحة من مميزاتها التي في تطبيقها على أفضل مقدر خطي غير متحيز "BLUE"، وفي ظل الظروف الأساسية يتم الحصول على تلك المدارات وكما في الصيغة الآتية:[1]

\[Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_K X_{ik} + U_i \] (3)

حيث يكون المقدر التقليدي في تقدير هذا المميز هو مقدر المربعات الصغرى (OLS) ويمتلك هذا المقدر خاصية أفضل مقدر خطي غير متحيز عند تحقق الظروف الخاصة بالمميزات الاعتيادية ولكن عند خروج الظروف الخاص ببيانات تابية قيم لخطأ:

\[\text{var}(U_i) = \sigma_u^2 \]

سوف يعاني المميز من مشكلة عدم ثبات تجانس تابيع الخطأ في هذه الحالة فأن استخدام مقدر (OLS) سوف يكون متحرزاً وغير كفاء، وان مصفوفة التباين والتباين المشترك له تأخذ الصيغة الآتية:

\[\text{cov}(b) = (X'X)^{-1}X'\Omega(X'X)^{-1} \] (4)

اذ أن:

\[E(e'e) = \Omega \]

حيث: \(\Omega \) هي مصفوفة محددة موجبة تحت ثبات التجانس من درجة (n x n) وتعرف كالمatrix

وعندما يكون التباين ثابتاً تكون المصفوفة التباين والتباين المشترك تأخذ الصيغة الآتية:[15].

\[\text{cov}(b) = \sigma^2 (X'X)^{-1} \]

يمكن حساب (\(\hat{\sigma}^2 \)) والتي يمكن تقديرها من الصيغة الآتية:

\[\hat{\sigma}^2 = \frac{e'e}{n-p} \]

ويتم وضعه بدرجة (OLS) لباقي (e = e_1, e_2, ..., e_n)
وعند وجود مشكلة عدم ثبات تجانس تباين الخطأ فإن:

المقدار يصبح كالآتي:

\[
V(b) = \sigma^2(X'X)^{-1}X'ZX(X'X)^{-1}
\]

بالنسبة لمصفوفة قطريق مع عناصر قطريق للأوزان

\[w_1, w_2, \ldots, w_n\]

\[
W = (Z^{-1})
\]

المربيات الصغرى المؤزون بالصيغة الآتية:

\[
b_{wls} = (X'WX)^{-1}X'WY
\]

\[
\text{cov}(b_{wls}) = \sigma^2_{wls}(X'WX)^{-1}
\]

\[
\hat{\sigma}^2_{wls} = \sum w_i e_i^2 / (n - p)
\]

وان مصفوفة التباين والتبان المشترك لمقدرات WLS تأخذ الصيغة الآتية:

1. ايجاد القيم التقديرية لـ \(y_i \) (يتم ايجاد قيم البواقي) من النموذج الانحدار الخطي باستخدام طريقة المربيات الصغرى المؤزون (LTS).
2. انحاذ القيمة المطلقة للمواقي
3. ايجاد القيم التقديرية لـ \(\hat{y_i} \) (يتم استعمال طريقة KNN KUTNER et al, 2004)
4. حساب الازوان الأولية الحيسية من خلال الصيغة معكوك مربيات القيم المقدرة لـ (S)

\[
w_{1i} = \frac{1}{(\hat{s}_i)^2}
\]

\[
w_{2i} = \begin{cases}
1 & |e_i| \leq 1.345 \\
\frac{1.345}{|e_i|} & |e_i| > 1.345
\end{cases}
\]

حيث ان 1.345 ثابت يدعى ثابت التناقص أو الضبط.

Huber function Huber function Bisquare function
\[W_i = w_{1i} \times w_{2i} \] (9)

إن معاملات الانحدار التي تم الحصول عليها من هذه الطرق هي التقدير المطلوب لنموذج الانحدار الخطبي المتعدد \(WLS \) لمشكلة عدم تجانس تباين الخطأ وظهور القيم الشاذة، وإيجاد تصفح يكون أداء المربعات الصغرى الموزونة باستعمال الأوزان النهائية في تقدير معلمات النموذج الانحدار الخطبي المتعدد العام بوجود مشكلتي عدم التجانس وقيم الشاذة.

\[b_{Tswls} = (X'W_iX)^{-1}X'W_iY \] (10)

Compare Criterion

7. **معيار المقارنة**

لغرض التوصل للمقدار الإكفا وجدت عدة معايير (مقاييس) للاستعمال بين طرق التقدير، وإن أفضلها من ممثلك أقل خطأ ممكن وهذا يقودنا بالنال لنموذج الأفضل لغرض التقدير والنتيجة للظاهرة تحت الدراسة. وأحد هذه المعايير هو متوسط الخطأ النسبي المطلق (Mean Absolute Percentage Error) للمعادلة في دراستنا، ويمكن حسابه بشكل نسي من خلال الصيغة التالية: \([2][3] \)

\[MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Y_i - \hat{Y}_i}{Y_i} \right| \times 100 \] (11)

اذاً:
- تمثل قيمة متوسط الاستجابة: \(Y_i \)
- يتمثل المتباينة بـ : \(\hat{Y}_i \)
- ومقارنة المقياس بالنسبة لأنموذج الأفضل المعادلة التي تمتلك أقل قيمة للمعقارب (متوسط للخطأ النسبي المطلق)

ملاحظة 8: مراحل وصف تطبيق تجربة المحاكاة

بمجرد الأتمام على أنموذج الانحدار الخطي المتعدد حسب الصيغة (3)، نقوم بتطبيق المحاكاة للمقارنة بين الغرائح التجريبية للمحاكاة والمقارنة بين الطريقة المحصبة لاختيار اقل نموذج متوسط الخطأ النسبي المطلق (MAPE). يتم كتابة البرنامج الإحصائي باللغة

بالاعتماد على لغة الـ

وأشخاص التحفيزية «»، وهو من اللغات الحديثة التي صنع دينجها وتمت مطابق في مجال البرمجة العلمية في قطاعي الاحصاء والمعلوماتية الحيوية، إذ يتم وصف تجارب المحاكاة من خلال المراحل والخطوات الآتية:

- تم توليد عينات بأحجام مختلفة (150, 50, 99, 150) للمتغير المعتمد (Y) وفق أنموذج الانحدار الخطي المتعدد.

\[Y_i = B_0 + B_1X_{1i} + B_2X_{2i} + B_3X_{113} + B_4X_{14} + B_5X_{15} + U_i \quad i = 1,2,3,...,n \] (12)

- لتوليد نموذج الانحدار الخفي متجانس يتم من خلال الصيغة التالية:

\[\sigma_i^2 = \sigma^2 \frac{\text{Exp}(ax_{1i} + a x^2_{2i} + a x^3_{3i} + a x^4_{4i} + a x^5_{5i})}{\min(\sigma_i^2)} \] (13)

حيث أن:
- 1: يمثل ثابت اعتباطي (عشواني).

- وتحديد مستوى عدم التجانس تباين الخطأ، كان من خلال المقياس التالي:

\[\sigma = \min(\sigma_i^2) \quad i=1,2,...,n \] (14)
وتتم تحديد نسبة عدم تجانس تباين الخطأ لكل حجم عينة بين {a=0 و a=2.1 و a=1.5 و a=0}، فعندما تكون قيمة (σ=1) وهي النسبة التي تكون عندها البيانات متجانسة، وعند (σ=2.1, a=1.5) على التوالي يكون (2.8, 3.8) و (σ=3.8) وهي النسبة التي تدل على وجود مشكلة عدم تجانس تباين الخطأ، ويتطلب هذا كله بهدف ايجاد التوازن غير المتجانس وبعد تكرار التجريبية ولاحجج العينات المختلفة (50,99,150) و(13) و(14) كانت النتائج للبيانات هي (σ=2.8) التي دلت في دراستنا هذه على وجود مشكلة عدم تجانس التباين ونسبة وجود لقيمة الشأبة (10%) وحجم عينة (n=99).

- تحديد اختيار القيم الافتراضية للمعالم بالاعتماد على المعالم الحقيقية، وتعد هذه المرحلة من أهم المراحل التي يعتمد عليها لاحقاً.
- توليد المتغيرات التوضيحية (Xij) الخامسة، وتم هذا بالاعتماد على توزيعها في البيانات الحقيقية، وباستعمال الدوال الجاهزة في برنامج (R) وكما يلي:

\[
X_1 \sim N(0.0925, 0.01) \\
X_2 \sim N(0.0737, 0.005) \\
X_3 \sim N(0.065, 0.034) \\
X_4 \sim N(0.168, 0.02) \\
X_5 \sim N(0.542, 0.01)
\]

- تعريض المتغيرات التي تم توليدها في اعلاه لأجل الحصول على متغير الاستجابة (y).
- يتم حساب إحصاء الطرق الحسبانية والمفارنة بينهم عن طريق المعيار (MAPE)، ونكرار (1000) مرة...

شكل (1): يظهر القيمة الشائدة في متغير الاستجابة (Y) بواسطة Cauchy (0,10)

Box-Plot
جدول (1): بين مقدار المعالمات وقود (MAPE) للأنسجة الخطى المتعدد (n=50) و(ε=1) (%)

<table>
<thead>
<tr>
<th>المعالمات</th>
<th>القيم الإفزاعية</th>
<th>OLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>-0.38967</td>
<td>-0.38450</td>
<td>-0.38383</td>
</tr>
<tr>
<td>(b_1)</td>
<td>0.75359</td>
<td>0.76788</td>
<td>0.76668</td>
</tr>
<tr>
<td>(b_2)</td>
<td>3.54956</td>
<td>3.52446</td>
<td>3.51932</td>
</tr>
<tr>
<td>(b_3)</td>
<td>-0.07543</td>
<td>-0.07769</td>
<td>-0.07254</td>
</tr>
<tr>
<td>(b_4)</td>
<td>2.62533</td>
<td>2.63098</td>
<td>2.63013</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.21939</td>
<td>0.22348</td>
<td>0.22300</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.10434</td>
<td>0.10207</td>
<td>0.07822</td>
</tr>
</tbody>
</table>

جدول (2): بين مقدار المعالمات وقود (MAPE) للأنسجة الخطى المتعدد (n=50) و(ε=1) (%)

<table>
<thead>
<tr>
<th>المعالمات</th>
<th>القيم الإفزاعية</th>
<th>OLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>-0.38967</td>
<td>-0.37638</td>
<td>-0.37651</td>
</tr>
<tr>
<td>(b_1)</td>
<td>0.75359</td>
<td>0.70334</td>
<td>0.70280</td>
</tr>
<tr>
<td>(b_2)</td>
<td>3.54956</td>
<td>3.57158</td>
<td>3.57182</td>
</tr>
<tr>
<td>(b_3)</td>
<td>-0.07543</td>
<td>-0.07822</td>
<td>-0.07831</td>
</tr>
<tr>
<td>(b_4)</td>
<td>2.62533</td>
<td>2.62348</td>
<td>2.62347</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.21939</td>
<td>0.22165</td>
<td>0.22169</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.07912</td>
<td>0.06751</td>
<td>0.07831</td>
</tr>
</tbody>
</table>

جدول (3): بين مقدار المعالمات وقود (MAPE) للأنسجة الخطى المتعدد (n=150) و(ε=1) (%)

<table>
<thead>
<tr>
<th>المعالمات</th>
<th>القيم الإفزاعية</th>
<th>OLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>-0.38967</td>
<td>-0.37574</td>
<td>-0.37609</td>
</tr>
<tr>
<td>(b_1)</td>
<td>0.75359</td>
<td>0.73427</td>
<td>0.73519</td>
</tr>
<tr>
<td>(b_2)</td>
<td>3.54956</td>
<td>3.55531</td>
<td>3.55616</td>
</tr>
<tr>
<td>(b_3)</td>
<td>-0.07543</td>
<td>-0.07860</td>
<td>-0.07835</td>
</tr>
<tr>
<td>(b_4)</td>
<td>2.62533</td>
<td>2.61482</td>
<td>2.61550</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.21939</td>
<td>0.21949</td>
<td>0.21959</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.06341</td>
<td>0.05180</td>
<td>0.07831</td>
</tr>
</tbody>
</table>

جدول (4): بين مقدار المعالمات وقود (MAPE) للأنسجة الخطى المتعدد (n=50) و(ε=2.8) (%)

<table>
<thead>
<tr>
<th>المعالمات</th>
<th>القيم الإفزاعية</th>
<th>OLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>-0.58967</td>
<td>-0.60519</td>
<td>-0.59185</td>
</tr>
<tr>
<td>(b_1)</td>
<td>0.55359</td>
<td>0.70119</td>
<td>0.50757</td>
</tr>
<tr>
<td>(b_2)</td>
<td>3.00000</td>
<td>3.24177</td>
<td>3.17669</td>
</tr>
<tr>
<td>(b_3)</td>
<td>-0.09543</td>
<td>-0.01555</td>
<td>-0.04524</td>
</tr>
<tr>
<td>(b_4)</td>
<td>2.00000</td>
<td>2.01005</td>
<td>2.05630</td>
</tr>
<tr>
<td>(b_5)</td>
<td>0.11939</td>
<td>0.16994</td>
<td>0.16657</td>
</tr>
<tr>
<td>MAPE</td>
<td>2.46627</td>
<td>0.72808</td>
<td>0.72065</td>
</tr>
</tbody>
</table>

MAPE = \(\left(\frac{1}{n} \sum_{i=1}^{n} |T_i - S_i| \right) / \bar{S} \)
جدول (5): بين مقدرات المعاملاط وقيم (MAPE) للنموذج الخطي المتعدد (n=99) و(σ=2.8)

<table>
<thead>
<tr>
<th>العددات</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.58967</td>
<td>-0.59325</td>
<td>-1.36009</td>
<td>-0.60503</td>
<td>-1.63426</td>
<td>-0.59025</td>
</tr>
<tr>
<td>b_1</td>
<td>0.55359</td>
<td>0.63911</td>
<td>3.12235</td>
<td>0.61536</td>
<td>4.96038</td>
<td>0.57009</td>
</tr>
<tr>
<td>b_2</td>
<td>3.00000</td>
<td>3.18920</td>
<td>2.06886</td>
<td>3.32015</td>
<td>7.84201</td>
<td>3.15428</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.09543</td>
<td>-0.03611</td>
<td>0.86628</td>
<td>-0.03351</td>
<td>3.47390</td>
<td>-0.08774</td>
</tr>
<tr>
<td>b_4</td>
<td>2.00000</td>
<td>2.00781</td>
<td>5.40699</td>
<td>2.04586</td>
<td>5.28273</td>
<td>1.98837</td>
</tr>
<tr>
<td>b_5</td>
<td>0.11939</td>
<td>0.16536</td>
<td>2.14149</td>
<td>0.16195</td>
<td>3.95657</td>
<td>0.18399</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td>1.46458</td>
<td>20.97561</td>
<td>0.57257</td>
<td>46.96676</td>
<td>0.61093</td>
</tr>
</tbody>
</table>

جدول (6): بين مقدرات المعاملاط وقيم (MAPE) للنموذج الخطي المتعدد (n=150) و(σ=2.8)

<table>
<thead>
<tr>
<th>العددات</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.58967</td>
<td>-0.61140</td>
<td>-1.23602</td>
<td>-0.61265</td>
<td>-1.86031</td>
<td>-0.60053</td>
</tr>
<tr>
<td>b_1</td>
<td>0.55359</td>
<td>0.71905</td>
<td>2.22645</td>
<td>0.56555</td>
<td>3.29239</td>
<td>0.52555</td>
</tr>
<tr>
<td>b_2</td>
<td>3.00000</td>
<td>2.85511</td>
<td>3.95298</td>
<td>3.16054</td>
<td>4.81556</td>
<td>3.29272</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.09543</td>
<td>-0.01316</td>
<td>2.30539</td>
<td>0.00152</td>
<td>4.21201</td>
<td>-0.04153</td>
</tr>
<tr>
<td>b_4</td>
<td>2.00000</td>
<td>2.04642</td>
<td>3.81797</td>
<td>2.03977</td>
<td>6.27659</td>
<td>2.03027</td>
</tr>
<tr>
<td>b_5</td>
<td>0.11939</td>
<td>0.17744</td>
<td>2.27287</td>
<td>0.19438</td>
<td>4.30828</td>
<td>0.18483</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td>1.33710</td>
<td>19.79399</td>
<td>0.48855</td>
<td>34.60029</td>
<td>0.48350</td>
</tr>
</tbody>
</table>

جدول (7): بين مقدرات المعاملاط وقيم (MAPE) للنموذج الخطي المتعدد (n=50) و(σ=3.8)

<table>
<thead>
<tr>
<th>العددات</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.18967</td>
<td>-0.25643</td>
<td>-3.31190</td>
<td>-0.17958</td>
<td>-4.22824</td>
<td>0.14542</td>
</tr>
<tr>
<td>b_1</td>
<td>0.95399</td>
<td>1.32240</td>
<td>6.89649</td>
<td>1.15106</td>
<td>7.42969</td>
<td>1.04403</td>
</tr>
<tr>
<td>b_2</td>
<td>4.00000</td>
<td>3.62570</td>
<td>21.90240</td>
<td>3.46570</td>
<td>5.11339</td>
<td>3.86291</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.05543</td>
<td>0.07119</td>
<td>6.30013</td>
<td>0.06786</td>
<td>11.73614</td>
<td>0.27101</td>
</tr>
<tr>
<td>b_4</td>
<td>3.20000</td>
<td>3.33338</td>
<td>8.74505</td>
<td>3.58650</td>
<td>10.72370</td>
<td>2.94753</td>
</tr>
<tr>
<td>b_5</td>
<td>0.31939</td>
<td>0.45158</td>
<td>5.57962</td>
<td>0.53742</td>
<td>10.10190</td>
<td>0.45229</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td>2.06646</td>
<td>83.59299</td>
<td>1.91832</td>
<td>12.09026</td>
<td>0.96556</td>
</tr>
</tbody>
</table>

جدول (8): بين مقدرات المعاملاط وقيم (MAPE) للنموذج الخطي المتعدد (n=99) و(σ=3.8)

<table>
<thead>
<tr>
<th>العددات</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
<th>الOLS</th>
<th>TSRWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-0.18967</td>
<td>-0.28240</td>
<td>-2.38120</td>
<td>-0.15619</td>
<td>-5.94204</td>
<td>-0.27430</td>
</tr>
<tr>
<td>b_1</td>
<td>0.95399</td>
<td>1.23245</td>
<td>3.42885</td>
<td>1.33031</td>
<td>19.68543</td>
<td>1.21104</td>
</tr>
<tr>
<td>b_2</td>
<td>4.00000</td>
<td>4.17144</td>
<td>17.50950</td>
<td>4.07317</td>
<td>12.76553</td>
<td>4.51434</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.05543</td>
<td>0.13094</td>
<td>5.64516</td>
<td>0.05021</td>
<td>9.94915</td>
<td>0.05838</td>
</tr>
<tr>
<td>b_4</td>
<td>3.20000</td>
<td>3.25821</td>
<td>8.79699</td>
<td>3.48980</td>
<td>13.41299</td>
<td>3.29584</td>
</tr>
<tr>
<td>b_5</td>
<td>0.31939</td>
<td>0.50499</td>
<td>4.77104</td>
<td>0.47713</td>
<td>10.30337</td>
<td>0.48244</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td>1.17627</td>
<td>8.63349</td>
<td>1.68164</td>
<td>15.13158</td>
<td>1.72045</td>
</tr>
</tbody>
</table>
جدول (9): بين مقدرات المعاملات وقيم (MAPE) للأنموذج الخطي المتعدد (n=150) و(σ=3.8)

<table>
<thead>
<tr>
<th>المعمات</th>
<th>القيم الإحصائية</th>
<th>النسب المئوية %0</th>
<th>النسب المئوية %10</th>
<th>النسب المئوية %20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>TSRWLS</td>
<td>OLS</td>
<td>TSRWLS</td>
</tr>
<tr>
<td>b0</td>
<td>-0.18967</td>
<td>-0.26212</td>
<td>-2.73581</td>
<td>-0.16219</td>
</tr>
<tr>
<td>b1</td>
<td>0.95399</td>
<td>0.91803</td>
<td>0.91580</td>
<td>7.95493</td>
</tr>
<tr>
<td>b3</td>
<td>-0.05543</td>
<td>0.09677</td>
<td>0.08797</td>
<td>5.13544</td>
</tr>
<tr>
<td>b4</td>
<td>3.20000</td>
<td>3.33690</td>
<td>3.32695</td>
<td>7.17710</td>
</tr>
<tr>
<td>b5</td>
<td>0.31939</td>
<td>0.49764</td>
<td>0.49521</td>
<td>5.26830</td>
</tr>
<tr>
<td>MAPE</td>
<td>1.28158</td>
<td>1.17512</td>
<td>7.88989</td>
<td>1.56968</td>
</tr>
</tbody>
</table>

التحليل العملي لنتائج تجربة المحاكاة:
- من ملاحظنا نتيجة التجربة أن تفاعل المعدلات القائمة (MAPE) لقلّة المدارس الخاصة (σ) وهذا نيلت على الخصائص الجيدة للعصور "نكتة مقدة من القيم الحقيقية للمعترف عند زيادة زمام العينات.
- ومن الجداول (4،5،6،7،8) والتي تكون فيها البيانات تمثل من مشكلة عدم تجارة اقتصاد كالأخطاء وزيادة حجم البيانات وكافة النسب لقيم النشاط (0،10،20،30،40) تم استنادها على سرعة العمل الإحصائي، والتي ملأتها في غالب تجارب المحاكاة بوجود تلك المشكلات.
- بلاحظ من أن تم تفاعل المدارس، (MAPE) في حالة الطريقة الحالية (OLS) وكافة الجداول وزيادة نسب الشؤون ونسبة القياس للحصاء وكافة حجوم العينات.

الجهاز التصويري: تهيئة البيانات وتعريف متغيرات الدراسة:
- تم الحصول على البيانات من إمالة بغداد / دائر مستر المساوة / فس الطاقة المنتج / مختبر مشروع المساوة / لاحظ البيانات على ستة متغيرات منها خمسة أساسية تسبب عسيرة بقياس جميع المدخلات التوضيحية للعملية إضافة للهدف وهو نسبة العصرة كمتغير تابع مخرج العملية تم استخدامها في هذه الدراسة لسنة 2019 وعينة مكونة من (99) مقردة، والمتغيرات هي كالتالي:
 1. الكالسيوم المحتوى (X1).
 2. المغنيسيوم المحتوى (X2).
 3. الكالسيوم المحتوى (X3).
 4. قاعدية الماء المحتوى (X4).
 5. الإنتاج الإجمالي في الماء المحتوى (X5).

الطريقة الحصينة في تقدير المعلمات:
- في هذا الجزء تم تقدير معلمات الأنموذج باستخدام أفضل طريقة من طرق التقدير الحصينة التي تطابقت مع الجانب التجريبي للأنموذج (MAPE) وهي (OLS) ولذلك بالإضافة إلى أنها أظهرت أقل محاكاة و.tsrwls (والتي تم استخدامها على عينة التطبيقات المتقدمة البيانات الحقيقية لمعدلات عسيرة المياه والعوامل المؤثرة عليه، ومن خلال استخدام برنامج R) الذي ضمن القيم ذات الإمكانية المتقدمة في أغلب مجالات الاحصاء، تم كتابة البرنامج لتقدير المعلمات للأنموذج، وكانت النتائج كما في الجدول التالي:

جدول (10): بين القيم التقديرية لمعلمات أفضل طريقة (TSRWLS)
Conclusions

The proposed estimations (Goldfeld-Quadt) and the instrument (OLS) were applied to the data collected, and the results showed that the outliers and heteroscedasticity were present in the data. The presence of outliers and heteroscedasticity can affect the accuracy of the regression model, so it is necessary to use robust estimation techniques to improve the accuracy of the results. The results showed that the TSRLS estimator was more accurate than the OLS estimator in the presence of outliers.

Recommendations

1. Testing the model using the Goldfeld-Quadt test is recommended to identify outliers in the data.
2. The presence of outliers and heteroscedasticity in the data can affect the accuracy of the results, so it is necessary to use robust estimation techniques to improve the accuracy of the results.
3. The TSRLS estimator is recommended for use in the presence of outliers and heteroscedasticity.