
 1

SHA_1 Enhancement Based on Resilent Boolean Function

Ahmed Y. Yousif
1
, Tayseer S. Atia

1
, Abdelsattar S.Auadh

2

atds@yahoo.com, tsamastersc@yahoo.com

Abstract

SHA_1 is a one way hash function which is used in cryptographic systems to provide

message authentication and integrity. In recent year this algorithm faced new type of

attacks. These attacks make use of the simplicity of message expansion step to leak some

information used to build a matching patterns or build differential path according to local

collision. In this paper an enhanced version of SHA_1 was proposed depend on using

resilent Boolean function which is a Boolean function that offers properties of

balancedness, algebraic degree, correlation immunity and nonlinearity. This enhancement

tends to countermeasures these attacks. Enhancement was made in two places for the

original algorithm, first enhanced message expansion process, second change the value of

32 variable inputs to Boolean function in the algorithm.

 بالاعتماد على الذوال المىطقية الصامتة SHA_1تحسيه

 سالم عوض عبذ الستار ،تيسير سلمان عطية ،احمذ يووس يوسف

 الخلاصة

SHA_1 في السٌْاث . ّالسلاهتُي هي دّال الطشيق الْاحذ ّالخي حسخخذم في اًظوت الخجفيش لخْفيش الوْثْقيت

الاخيشة ّاجِج ُزٍ الخْاسصهيت اًْاع جذيذة هي الِجواث. ُزٍ الِجواث حسخفيذ هي بساطت هشحلت الخْسغ في

الشسالت لخسشيب بؼض الوؼلْهاث الخي حسخخذم في بٌاء اًواط الوطابقت اّ بٌاء الطشيق الخفاضليت ّفقا للخصادم

ن اقخشاحَ بالاػخواد ػلى اسخخذام الذّال الوٌطقيت الصاهخت ح SHA_1هي حسيالوحلي. في ُزا البحث اصذاس ه

ّالخي حْفش خصائص الخْاصى ، الذسجت الجبشيت، هٌاػت الاسحباط ّاللاخطيت. ُزا الخحسيي يِذف الى هقاهت حلك

الِجواث. الخحسيي قذ ّضغ في هْضؼيي في الخْاسصهيت الاصليت، الاّل ححسيي هشحلت حْسيغ الشسالت، ّالثاًي

 . بج الوذخلت الى الذّال الوٌطقيت في الخْاسصهيت 23ييش قين الوخغيشاث راث حجن حغ

1 Department of Computer Science and Information System of University of Technology in Iraq

2 Construction and Projects directorate-ministry of higher educations

mailto:atds@yahoo.com
mailto:tsamastersc@yahoo.com

 2

1. Introduction

The hash function SHA-1 was issued by NIST in 1995 as a Federal Information

Processing Standard [1]. Since its publication, SHA-1 has been adopted by many

government and industry security standards, in particular standards on digital signatures

for which a collision-resistant hash function is required. In addition to its usage in digital

signatures, SHA-1 has also been deployed as an important component in various

cryptographic schemes and protocols, such as user authentication, key agreement, and

pseudorandom number generation. Consequently, SHA-1 has been widely implemented

in almost all commercial security systems and products.

The group of the SHA family. Based on the idea of extended Feistel permutation , they

are equipped with more complex message expansion algorithm. The first function of that

family was SHA-0 [2]. It was promptly replaced by an improved version, SHA-1 [3].

Security concerns appeared to be true, as in 1998 Chabaud and Joux presented theoretical

attack on SHA-0 [4], which was later implemented and improved allowing for finding an

actual collision [5, 6]. Now, one of the most interesting questions in the field of hash

functions analysis is how secure is the present standard SHA-1, which is different from

SHA-0 by only one rotation in the message expansion process. The same principle used

to attack SHA-0 could be applied to construct an attack on SHA-1 provided that there

exists good enough differential pattern. Biham and Chen were able to find patterns that

allowed for finding collisions for variants reduced to first 34 and 36 steps . The attack can

be extended provided that one can find good differential patterns for longer variants of

SHA-1.

Keywords: Hash functions, collision search attacks, SHA-0, SHA-1,SRB,LFSR

2. Description of SHA-1 compression function [7]

SHA-1 compression function hashes 512 bit input messages to 160 bit digests.

Firstly, 512 bits of the message are divided into 16 words W0,W1, . . . ,W15 of 32 bits

each. The rest of 80 words is generated out of the first 16 words according to the

following recurrent formula:

Wi = ROL
1
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) for 16 ≤ i ≤ 79, (1)

 3

where ROL
k
 means rotation of word by k positions left. If this is the first application of

the compression function , five 32-bit registers A, B, C, D, E are initialized to values A0

= 0x67452301, B0 = 0xEFCDAB89, C0 = 0x98BADCFE, D0 = 0x10325476, E0 =

0xC3D2E1F0 accordingly. Next, 80 steps (i = 0. . . 79) of the following form are applied:

Ai+1 = ROL
5
(Ai) ⊞ fi(Bi,Ci,Di) ⊞Ei ⊞Wi ⊞ Ki, (2)

Bi+1 = Ai, Ci+1 = ROL
30

(Bi),

Di+1 = Ci, Ei+1 = Di,

where ⊞ denotes addition modulo 2^32, and Ri means the value of the register, R after i-

th iteration. Functions fi and constants Ki used in each iteration are defined as

fi(B,C,D) = BC ∨ (￢B)D for 0 ≤ i ≤ 19

 B ⊕ C ⊕ D for 20 ≤ i ≤ 39

 BC ∨ BD ∨ CD for 40 ≤ i ≤ 59

 B ⊕ C ⊕ D for 60 ≤ i ≤ 79

 Ki = 0x5A827999 for 0 ≤ i ≤ 19

 0x6ED9EBA1 for 20 ≤ i ≤ 39

 0x8F1BBCDC for 40 ≤ i ≤ 59

 0xCA62C1D6 for 60 ≤ i ≤ 79

3. Attacks on SHA

This section give an overview about the most recent attack against SHA .

3.1 Differential Attack of Chabaud and Joux

Chabaud and Joux presented in [4] differential attack on SHA-0. The fundamental

observation they made is that a change in bit j of word Wi can be corrected by

complementary changes in the following bits:

– bit (j + 6) mod 32 of word Wi+1,

– bit j of word Wi+2,

– bit (j + 30) mod 32 of word Wi+3,

 4

– bit (j + 30) mod 32 of word Wi+4,

– bit (j + 30) mod 32 of word Wi+5,

provided that functions fi+1,. . . ,fi+4 and additions ⊞ behave like linear functions, that is a

single change in the input to f results in a change of output of f, change in two inputs of f

leaves the result unchanged and differences propagate through additions without

generating carries The attack is possible due to the property of the message expansion

function which does not mix bits in different positions. Thanks to that it was possible to

consider message expansion algorithm as a bit-wise. Enumeration of all 2
16

 possible bit

patterns in position 1 allowed for choosing disturbance pattern in bit one that led to a

global differential pattern ± producing a collision with probability 2
−61

.

3.2 Differential patterns attacks on SHA-1

This attack depend on the Analysis of the message expansion algorithm of SHA-

1,The important property of the message expansion process given by the formula (1) is

that when considered as a function producing 80 new words out of 16 old ones it is a

bijection. This implies that it is possible to reconstruct the whole expanded message

given any 16 consecutive words of it, in particular the first 16. Moreover, if we consider

it on a bit level as a function A : F
512

 2 → F
512

 2 , it is easy to see that A is F2-linear as the

only operations used are word rotations (which are permutations of bits) and bitwise

XOR operations. Then the expansion of the initial message1 m € F
512

2 can be expressed

as a long vector :

The set of correction masks is built from a disturbance pattern by rotations and delaying

the pattern by 1, 2. . . 5 words in the same way as described in [4]. In order to find

 m

A(m)

A2(m)

A3(m)

A4(m)

E1(m) =

€ F
2560

2

 5

disturbance patterns which can give rise to correction patterns one has to look for bit

patterns b € F
2560

 2 that satisfy the following conditions:

1. Consider m to be a column vector

2. The pattern b has to be of the form (5), i.e. b is the result of the expansion Operation,

3. The pattern b ends with 5 *32 = 160 zero bits (the last five words are zero), because

each disturbance is corrected in the next 5 steps, so no disturbance May occur after the

word 74,

4. After delaying a pattern by up to 5 words (that is, shifting bits of b down (right) by 5 *

32 = 160 positions) the shifted pattern must also be the result of the expansion of its first

512 bits, that is [0 . . . 0 | b0 b1 . . . b2399]
T
 = E1([0 . . . 0 b0 . . . b351]

T
) .

4. b has both the minimal Hamming weight and the maximal number of non-zero bits in

position 1.

3.3 Local Collisions of SHA-1

Informally, a local collision is a collision within a few steps of the hash function.

A simple yet very important observation made in [8] is that SHA-0 has a 6-step local

collision that can start at any step i. The collision differential path on SHA-0 chooses j =

2 so that j + 30 = 32 becomes the MSB 4 (Most Significant Bit) to eliminate the carry

effect in the last three steps. In addition, the following condition,

mi,2 = ⌐mi+1,7

helps to offset completely the chaining variable difference in the second step of the local

collision, where mi,j denotes the j-th bit of message word mi. The message condition in

round 3,

Mi,2 = ⌐mi+2,2

helps to offset the difference caused by the non-linear function in the third step of the

local collision. Since the local collision of SHA-0 does not depend on the message

expansion, it also applies to SHA-1. Hence, this type of local collision can be used as the

basic component in constructing collisions and near collisions of the full 80-step SHA-0

and SHA-1.

 6

3.4 New Collision Search Attacks on SHA-1[9]

This technique works by; finding a disturbance vector with low Hamming weight is a

necessary step in constructing valid differential paths that can lead to collision. To

construct such a path for SHA-1, it needs to find appropriate starting steps for the local

collisions. They can be specified by an 80-bit 0-1 vector x = (x0,…,x79) called a

disturbance vector. It is easy to show that the disturbance vector satisfies the same

recursion defined by the message expansion. For the 80 variables xi, any 16 consecutive

ones determine the rest. So there are 16 free variables to be set for a total of 2
16

possibilities. Then a “good” vector satisfying certain conditions can be easily searched

with complexity 2
16

. In order for the disturbance vector to lead to a possible collision,

 On the other hand, the three conditions imposed on disturbance vectors seem to a major

obstacle conditions on the disturbance vectors need to be imposed , summarize in

Table1.

Table (1) Conditions on disturbance vectors for SHA-1 with t steps

Condition Purpose

xi = 0 for i = t ¡ 5,.., t ¡ 1 to produce a

collision

in the last step t

xi = 0 for i = -5,...,-1 to avoid truncated

local

collisions in first few steps

no consecutive ones to avoid an

impossible in the first 16 variables

in same bit position collision path

due to a property of IF

 There have been attempts to remove some of the conditions. For example, finding multi-

block collisions using near collisions effectively relax the first condition, and finding

collisions for SHA-1 without the first round effectively relax the second condition

(although it is no longer SHA-1 itself). Even with both relaxation, the Hamming weight

of the disturbance vectors is still too high to be useful for the full 80-step SHA-1.this is

the key idea of new attack by relax all three condition in Table(1). In other words, impose

no condition on the vectors other than they satisfy the message expansion recursion.

finding multi-block collisions using near collisions effectively relax the first condition,

and finding collisions for SHA-1 without the first round effectively relax the second

 7

condition. This allows finding disturbance vectors whose Hamming weights are much

lower than those used in existing attacks.

Then present several new techniques for constructing a valid differential path given such

disturbance vectors. The resulting path is very complex in the first round due to

consecutive disturbances as well as truncated local collisions that initiate from steps -5

through -1. This is the most difficult yet crucial part of new analysis, without which it

would be impossible to produce a real collision.

Once a valid differential path is constructed, the message modification techniques were

applied, first introduced by Wang et. al in breaking MD5 and other hash functions [15,

11–13], to further reduce the search complexity. Such extension requires carefully

deriving the exact conditions on the message words and chaining variables, which is

much more involved in the case of SHA-1 compared with SHA-0 and other hash

functions.

4. Cryptographic Boolean Functions[10]

Boolean functions play a central role in the design of most cryptosystems and in

their security. There are several construction methods for constructing correlation

immune and resilient Boolean functions. The most common of all these is the Maiorana-

McFarland construction technique.

The purpose of the nonlinear combining function f is to make the output stream

difficult for the cryptanalyst to predict. Such a function should posses certain desirable

properties to withstand known cryptanalytic attacks. Four such important properties are

balancedness, correlation immunity, algebraic degree and nonlinearity. Construction of

resilient Boolean functions achieving the upper bound on nonlinearity is an important

research area.

•Balanced Boolean function: A function f on n} 1 , 0 { is said to be balanced if its

output column in the truth table contains equal number of 0's and 1's (i.e., 1n2)(fwt

), where)(fwt is the Hamming weight of the Boolean function f .

•Algebraic Normal Form and Algebraic Degree: Every n-variable Boolean function

can be represented with its truth-table. But the representation of Boolean functions which

 8

is most usually used in cryptography is the n-variable polynomial representation over

} 1 , 0 { , of the form:

nnnnn xxxaxxaxxaxaxaxaaxxf ),...,(21...1231132112221101  … (3)

where coefficients   1 , 0 , ... , , ,121210 naaaa . This representation of f is called the

Algebraic Normal Form (ANF) of f . The number of variables in the highest order

product term with nonzero coefficient is called the algebraic degree d , or simply degree

of f .

Thus 21 xx  has degree 1, 3211 xxxx  has degree 3 etc.

•Correlation Immune Boolean Functions (CI): A Boolean function f on n-variables

is said to be mth-order correlation immune (mth-CI), if for any m-tuple of binary random

variables ... , , 21 imii xxx we have

 0) Z; ... , , (21 imii xxxI , n i ... i i 1 m21  …. (4)

where),...,(1 nxxfZ  , and Z)(x; I denotes the mutual information .

•Nonlinearity

The output to any Boolean function f always has correlation to certain linear

functions of its inputs. But this correlation is showed small. In other words, the minimum

Hamming distance between f and all affine functions must be high. This is called the

nonlinearity of n-variable function f and denoted by

 g)),((min)(
A(n)g

fdfnl


 ….. (5)

where A(n) is the set of all n-variable affine functions.

4.1 Resilient Boolean Functions[10]

 A balanced mth-order correlation immune Boolean function is called m-resilient

Boolean function.

 9

Let),...,(),...,(11 nn andxxx   both belong to n} 1 , 0 { and

nnxxx  11  . Let)(xf be a Boolean function on n-variables. Then the

Walsh transform of)(xf is a real valued function over n} 1 , 0 { , that can be defined as

 




n

x

xxf

fW
1,0

.)()1()( …… (6)

The Walsh transform is sometimes called the spectral distribution or simply the

spectra of a Boolean function. The spectra (value of Walsh distance) is

),(2 -

)(# -)(#),(

gfd

gfgfgfwd





where  is the length of both f and g .

The linear complexity of an infinite binary sequence s, denoted L(s), is defined as

follows :

- if s is the zero sequence s = 0, 0, 0, … , then L(s) = 0.

- if no LFSR generates s, then L(s) =  .

-otherwise, L(s) is the length of the shortest LFSR that generates s.

The linear complexity of a finite binary sequence s
n
, denoted L(s

n
), is the length

of the shortest LFSR that generates a sequence having s
n
 as its first n terms .

4.2 Construction the Sequences of Saturated Best Resilient Function SBRSs (i)

 This section presents the construction of the sequences of saturated best resilient

functions. In defining SBRS we state that any function in an SBRS must be an SBR

function[10].

Let , jif be a j-th function of SBRS(i). Then the function jiji fXf ,1,  (where

the variable X does not occur in , jif) is 1, jif function of SBRS(i). Consequently, if

one can construct , jif , then one can construct ,kif for all k > j .

 For SBRS(1), it is easy to construct 1,1f , since 0,1f is (5,1,3,12)(i.e. 5-varaibles,

1-resilient, 3-degee, 12-nonlinearity) SBR function. Note that all functions in SBRS(i)

have the same degree 2+i.

 10

 This shows that if one can construct any one of the functions in SBRS(i), then it is

possible to construct any function in the succeeding part of the sequence. Thus it is

enough if the initial function of each sequence is constructed.

Example (2)

To construct the function (6,2,3,24), we take an initial (5,1,3,12) SBR function:

 x),...,(32153525141542511 xxxxxxxxxxxxxxxf 

This function can be testing by using Walsh transform to ensure that it is resilent

Boolean function.

 x),...,(),...,(65161  xxfxxf

Then

632153525141542612 x) , ... , (xxxxxxxxxxxxxxxxf 

Then nl (1,0f) = 2nl (0,0f) = 24 according to theorem 2 in [1]. Then the function

(6,2,3,24) is SBR function.

5. Proposed Enhanced SHA_1

The proposed modification to the SHA_1 algorithm takes place in two steps

according to the analysis of attacks against the algorithm, the analysis to SHA_1 attacks

show that these attack depends on their attacks on the message expansion process, so the

Enhancement is implemented in two places to made the algorithm more complex and

complicated to be analyzed. This is done by using the saturated Best Resilient Function

since this Boolean function offer the properties of balancedness, algebraic degree,

correlation immunity and nonlinearity. The first place in message expansion equation ,

second it used in the 32 value processed by the SHA_1 Boolean function also to make

them difficult to guessed. SBR used in this paper to enhance the SHA_1 has the

following parameters:

6-varaibles, 2-resilient, 3-degee, 24-nonlinearity write as (6,2,3,24).

The formula of the SBR is

63215352514154261 x) , ... , (xxxxxxxxxxxxxxxxf 

 11

This function required 6 variables, each variables is a binary bit can be 0 or 1 and the

output from it also one bit. To apply this function in the proposed algorithm, six LFSR

were used with the following length(4,5,7,4,5,7) respectively, the size of LFSR chosen

such that gcd(m,n)=1 . Figure(1) shows the structure of the generator.

The selected SBR used in this paper is not constant any other functions can be used with

different parameters. SBR used in this paper is the best functions among several function

where the test result shows that it’s gave reasonable execution time with the desired

complexity. Finally tap function in LSBR is not constant it can implemented between any

selected cell.

Enhanced algorithm

a. Divide M(r) into 16 words W(0), W(1), ... , W(15), where W(0) is the left-most word.

Figure (1) structure of binary sequence for SBR of six variables

F(x1…x6)

X1

1

X2

X3

X4

X5

X6

X

32 bit value

from message

expansion

equation
Construct 32

bit value after

32 iteration

 12

b. For t = 16 to 79 let

W(t) = S 1 (FSBR(W(t-3) ⊕ W(t-8) ⊕ W(t-14) ⊕ W(t-16))).

Where S
n

mean circular left shift operation by n

FSBR is saturated Best Resilient Function with (6,2,3,24)

c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

d. For t = 0 to 79 do

FRSB(B); FRSB(C); FRSB(D)

TEMP = S
5

(A) ⊞ f(t;B,C,D) ⊞ E ⊞ W(t) ⊞ K
t

e. E = D; D = C; C = S
30

(B); B = A; A = TEMP.

f. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E.

6. Experimental Results
 Test result to the proposed enhanced SHA_1 algorithm is done in two cases, first

implement the proposed algorithm using SBR at message expansion step only and its

demonstrated in Table(2),second implement the algorithm using SBR at message

expansion step and before the Boolean function. These test is made against original

SHA_1 with different tests to check the correctively of the enhanced algorithm. These

tests are implemented in different ways, if the message modified by add, change or delete

some character from it. Also running time for both version of SHA_1 was measured.

Figure (2) shows the computed message digest in binary and hexadecimal result for

selected random input message using SHA_1 and the enhanced algorithm.

Table (2) output message digest using SBR in message expansion stage only

Output digest case
34E69D2FA7D26384CC9AC13344124EDDEE497825 Input message without change

CB82920679FCDEA2CC9AC13344124EDDEE497825 Remove first character

7939B7BDA3BC8887CC9AC13344124EDDEE497825 Add new character

228591DECCE71D90CC9AC13344124EDDEE497825 Change first character with another

Figure (3) shows the output digest when the input message was altered by remove one

character from the beginning by remove the character “T” from word “this”, its clear that

 13

the output digest from both algorithm was differ also its differ from the output digest in

Figure(2).

Figure (4) and Figure (5) display the message digest when the input message modified by

add new character “T” to word “This” and change character “T” to character “a”

respectively.

 Finally , the average time measured for both implementation show that the

original SHA_1 need 2 sec to compute message digest while the proposed algorithm need

10 sec and this is due to further execution time needed by SBR in LSBR but this delay is

compatible with the required complexity .

Figure (2) output

digest for both

version of SHA_1

using random

input message

a. output after delete

character “T”

 14

7. Conclusion
In this paper an enhanced version of SHA_1 was proposed, this enhancement based on

resilent Boolean function which offer the properties of balancedness, algebraic degree,

correlation immunity and nonlinearity. this enhancement tend to countermeasures attacks

on original algorithm which make use of the message expansion process to leak some

information about message blocks and build a matching pattern ,or construct differential

path based on local collision since this process is linear.

Experimental result show that using SBR function in message expansion only that the

output digest correlated for different implementation for the same input message in

different form. But using SBR in message expansion and before the Boolean function in

the algorithm show uncorrelated message digest for the same message in different forms

also the output is different completely from the original version of SHA_1 in each

implementation.

Finally , the average time measured for both implementation show that the original

SHA_1 need 2 sec to compute message digest while the proposed algorithm need 10 sec

and this is due to further execution time needed by SBR in LFSR and its compatible with

required degree of complexity .

Figure (3) output digest for both version of SHA_1 after modify input message

b. output after add new character “t” c. output after change character t to a

 15

References

1. NIST. Secure hash standard. Federal Information Processing Standard, FIPS-180-1,

April 1995.

2. FIPS 180. Secure hash standard (SHS). National Institute of Standards and

Technology, May 1993. Replaced by [15].

3. National Institute of Standards and Technology. Secure hash standard (SHS). FIPS

180-2, August 2002.

4. F. Chabaud and A. Joux. Differential collisions in SHA-0. In H. Krawczyk, ed- itor,

Advances in Cryptology - CRYPTO’98, volume 1462 of LNCS, pages 56–71.

Springer-Verlag, 1998.

5. C. Lemuet. Collision in SHA-0. sci.crypt newsgroup message, Message-ID:

cfg007$1h1b$1@io.uvsq.fr, 12 August 2004.

6. A. Joux. Collisions in SHA-0. Short talk presented at CRYPTO’04 Rump Session,

2004.

7. K. Matusiewicz and J. Pieprzyk, Finding good differential patterns for attacks on SHA-

1,Centre for Advanced Computing - Algorithms and Cryptography, Department of

Computing, Macquarie University,Sydney, NSW 2109.

8. 14. X. Y. Wang,” The Collision attack on SHA-0”.

www.infosec.edu.cn, 1997.

9. X. Wang, Y. Yin, and Hongbo Yu,” Finding Collisions in the Full SHA-1”, Shandong

University, Jinan 250100, China.

10. A. Malik and S. Bader Sadkhan ,” Mathematical Analysis of Design Parameters for

Nonlinear Stream Cipher Systems”,Msc,thesis, University of Technology , Department

of Applied Science, June 2005.

