شامل:

بناء توزيع احتمالي جديد (Gompertz-Lindely)

أ.د. رياض عبد الإمام زلان

المستخلص

تم في هذا البحث بناء توزيع احتمالي جديد هو (جومبيرت-ليندلي) من خلال نهج توزيع غومبرت-ليندلي (Gompertz-Lindely) و هو توزيع ناجح عند تطبيقات التوزيعات، حيث يستخدم توزيع جومبيرت-ليندلي (Gompertz-Lindely) في حالات قصيرة وكمية صغيرة من البيانات. هذا التوزيع يوفر متها من أجل تحقيق التوزيعات الكلاسيكية، وينتج عن توزيعات غومبرت-ليندلي (Gompertz-Lindely) ويجعله من الدراسة منهجية. تقدم الدراسة نتائج التوزيع الجديد في البيئات المختلفة وتسأل التوزيعات الكلاسيكية. للبيانات، فقد يُظهر التوزيعات الكلاسيكية، ويعتبر النتائج التي تبرهن دقة النتائج بالنسبة للتحليل الإحصائي وفقاً.

المقدمة

إن التوزيعات الإحصائية مقدمة، ويعود ثمة ووصف بيانات الظواهر الحقيقي ومثلت بها، وقد استعملت التوزيعات الاحتمالية الكلاسيكية على نطاق واسع وعدد عقود في هذا المجال، بالرغم من وجود عدد كبير من التوزيعات الاحتمالية الكلاسيكية، تطورها وانتشار تطبيقاتها في مجالات الحياة المختلفة إلا أنها كانت كافية أو قد تكون ضعيفة لتفسير السلوكيات الحيوية، وينتج عنها توزيعات غومبرت-ليندلي (Gompertz-Lindely) ويجعله من الدراسة منهجية. تقدم الدراسة نتائج التوزيع الجديد في البيئات المختلفة وتسأل التوزيعات الكلاسيكية، ويعتبر النتائج التي تبرهن دقة النتائج بالنسبة للتحليل الإحصائي وفقاً.

المصطلحات

توزيع جومبيرت-ليندلي

التوزيعات الاحتمالية

السلامة

المراجع

1. https://doi.org/10.55562/jrucs.v54i1.596

المعلومات البحثية

<table>
<thead>
<tr>
<th>تاريخ البحث</th>
<th>2022/12/31</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاريخ تقدم البحث</td>
<td>2023/3/3</td>
</tr>
<tr>
<td>تاريخ قبول البحث</td>
<td>2023/12/31</td>
</tr>
</tbody>
</table>

الكلمات المفتاحية

- توزيع جومبيرت-ليندلي
- التوزيعات الاحتمالية
- دالة الموثوقية
- التحليل الإحصائي

المؤلفون

- رياض عبد الإمام زلان

العنوان

بناء توزيع احتمالي جديد (Gompertz-Lindely)

المجلة

مجلة كلية الرافدين الجامعة للعلوم

المراجع

https://doi.org/10.55562/jrucs.v54i1.596

المراجع

1. https://doi.org/10.55562/jrucs.v54i1.596
2. التوزيعات الاحتمالية الكلاسيكية

(Gompertz Distribution) 2.1 توزيع جومبيرتر (Gompertz Distribution) هو واحد من التوزيعات الاحتمالية الكلاسيكية التي تتمتع بحدود ودالة الاحتمالات (pdf) لتقدير دالة المخاطرة ونسبة المغادرة.

أ.م.د. ريسان عبد الامام؛ م.م. منتظر جمعة و م. محمد موسى

أ.م.د. ريسان عبد الامام؛ م.م. منتظر جمعة و م. محمد موسى

(ع) = (1 - e^{-x\mu})^{-1} , x \geq 0 , \mu > 0

حيث أن (\mu) تمثل معلمة القياس و (\lambda) تمتاز معلمة الشكل للتوزيع.

ومن التوزيع الاحتمالي (cdf) تكون بالشكل:

(2)

ومن الدالة المطلقة للاختبارات بالشكل التالي:

(3)

(4)

(Lindley Distribution) 2.2 توزيع ليندلي (Lindley Distribution) كجزء من التوزيعات الاحتمالية المستمرة الناتجة من حل جزئي ل椭ب شكلين المثلثين يبحث توزيع كام لـ لـ (Gamma Distribution).

(5)

حيث أن (\theta) تمثل معلمة القياس للتوزيع.

ومن الدالة التوزيع الاحتمالي (cdf) تكون بالشكل:

(6)

ومن الدالة المطلقة (pdf) تكون بالشكل التالي:

(7)

(8)

(Gompertz- Lindley Distribution) 3. توزيع جومبيرتر ليندلي (Gompertz-Lindley Distribution) تحقق توزيع جومبيرتر مع توزيع ليندلي من خلال مساحة المقابلة للقياس (G-LD) على توزيع جومبيرتر باعتبارها توزيع ليندلي (Lindley) بالشكل الذي تكون دالة الكثافة الاحتمالية لـ لـ (G-LD) وكمما يلي:

(9)

ويتم تحويل معادلة (1) و (5) في المعادلة (9) ينتج:
\[f_{GL}(x; \mu, \theta) = \int_{0}^{\infty} \lambda \, e^{(1-e^{\lambda})\lambda + \lambda^{\mu}} \frac{\theta^{2}}{1+\theta} (1+\lambda)e^{-\lambda \lambda} \, d\lambda \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{1+\theta} \int_{0}^{\infty} \lambda \, e^{(1-e^{\lambda})\lambda} (1+\lambda)e^{-\lambda \lambda} \, d\lambda \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{1+\theta} \int_{0}^{\infty} \lambda \, e^{(1-e^{\lambda})\lambda - \theta \lambda} + \lambda^{2} \, e^{(1-e^{\lambda})\lambda - \theta \lambda} \, d\lambda \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{1+\theta} \left[\int_{0}^{\infty} \lambda e^{-\lambda \lambda(\theta + e^{x^{\mu}} - 1)} \, d\lambda + \int_{0}^{\infty} \lambda^{2} e^{-\lambda \lambda(\theta - (1-e^{x^{\mu}}))} \, d\lambda \right] \quad (10) \]

\[d\lambda = \frac{1}{(\theta + e^{x^{\mu}} - 1)} \, dz \]

وبالتبسيط في المعادلة رقم (10) نحصل على:

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{1+\theta} \left[\int_{0}^{\infty} \frac{z}{(\theta + e^{x^{\mu}} - 1)^{2}} e^{-z} \, dz + \int_{0}^{\infty} \frac{z^{2}}{(\theta + e^{x^{\mu}} - 1)^{3}} e^{-z} \, dz \right] \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{(1+\theta)(\theta + e^{x^{\mu}} - 1)^{2}} \left[\int_{0}^{\infty} z e^{-z} \, dz + \frac{1}{(\theta + e^{x^{\mu}} - 1)} \int_{0}^{\infty} z^{2} e^{-z} \, dz \right] \]

وباستخدام خاصية تكامل كاما فإن:

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{(1+\theta)(\theta + e^{x^{\mu}} - 1)^{2}} \left[1 + \frac{2}{(\theta + e^{x^{\mu}} - 1)} \right] \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} e^{x^{\mu}}}{(1+\theta)(\theta + e^{x^{\mu}} - 1)^{2}} \left[(\theta + e^{x^{\mu}} - 1 + 2) \right] \]

\[f_{GL}(x; \mu, \theta) = \frac{\mu \theta^{2} (1 + e^{x^{\mu}} + \theta) e^{x^{\mu}}}{(1+\theta)(-1 + e^{x^{\mu}} + \theta)^{3}} \quad (11) \]

والمعادلة (11) تمثل دالة الكثافة الاحتمالية (pdf) لتوزيع G-L-D (G-LD) لدالة توزيع جومبيرت-ليندلي (G-LD) ونقيمة مختلفة للمعلمات (μ, θ) والأشكال التالية توضح دوال توزيع جومبيرت-ليندلي (G-LD) ونقيمة مختلفة للمعلمات (μ, θ).
بناء توزيع احتمالي جديد (Gompertz-Lindely) لتقدير دالة المعولية ودالة المخاطرة

أ.م.د. ريسان عبد الامام؛ م.م. منتظر جمعة و م. محمد موسى

شكل (1): دالة الكثافة الاحتمالية لتوزيع G-L

بلاحظ من الشكل (1) أن دالة الكثافة الاحتمالية تأخذ أشكالا متعددة منها الاسم والمثاثل والانتواء نحو اليمين (التواء موجب).

وإن دالة التوزيع التراكمية ودالة المعولية تكتبان بالشكل التالي على التوالي:

\[F_{GL}(x; \mu, \theta) = \frac{(e^{x\mu} - 1)(\theta + \theta^2 + e^{x\mu}(1 + \theta) - 1)}{(1 + \theta)(e^{x\mu} + \theta - 1)^2} \]

(12)

\[R_{GL}(x; \mu, \theta) = \frac{\theta^2(e^{x\mu} + \theta)}{(1 + \theta)(e^{x\mu} + \theta - 1)^2} \]

(13)

والأشكالان التاليان يوضحان شكل دالة التوزيع التراكمية ودالة المعولية لتوزيع G-L.

شكل (2) وشكل (3): دالة التوزيع التراكمية ودالة المعولية لتوزيع G-L

اما دالة المخاطرة للتوزيع فتكتب بالشكل:

\[h_{GL}(x; \mu, \theta) = \frac{\mu e^{x\mu}(1 + e^{x\mu} + \theta)}{(e^{x\mu} + \theta - 1)(e^{x\mu} + \theta)} \]

(14)

والأشكالان التاليان يوضحان شكل دالة التوزيع التراكمي ودالة المعولية لتوزيع G-L.
شكم\textbf{4}: دالة المخاطرة لـ G-L D

كما نلاحظ من الأشكال (4) أن دالة المخاطرة لـ G-L D تزداد مع الزمن ولكنها محددة بقيمة المعلمة \(\mu \). حيث أن دالة المخاطرة تتزايد بزيادة في النشاط مع الزمن. في هذه الأثناء، يميّز التوزيع نوع توزيع جومبرترز الذي تكون فيه دالة المخاطرة متزايدة مع الزمن.

\section*{4.1 خاصيات توزيع جومبرترز ليندلي (G-L D)}

\subsection*{4.1.1 الدالة المجهولة}

دارب المعلومات في مكان آخر في توزيع G-L D تعرف بالشكل التالي:

\begin{equation}
\begin{aligned}
P(X \leq x) &= F_{G-L D}(x; \mu, \theta) = q \\
\frac{(e^{\mu} - 1)(\theta + \theta^2 + e^{\mu}(1 + \theta) - 1)}{(1 + \theta)(e^{\mu} + \theta - 1)^2} &= q
\end{aligned}
\end{equation}

\begin{align}
x_q &= \frac{Log\left[\frac{\theta}{\sqrt{1 - q - \theta q}} - \theta + 1\right]}{\mu} \\
x_{\text{Median}} &= \frac{Log\left[\frac{\theta}{\sqrt{\frac{1 - \theta}{2}}} - \theta + 1\right]}{\mu} \\
x_u &= \frac{Log\left[\frac{\theta}{\sqrt{1 - u - \theta u}} - \theta + 1\right]}{\mu}
\end{align}

حيث أن تؤدي عشوائياً يتبع التوزيع المنتظم [0,1]\\n
\begin{equation}
M_x = \frac{\mu^2}{(1 + \theta)(-1 + e^{\mu} + \theta)^3}
\end{equation}

\section*{4.2 الدالة المدفوعة للعووم}

\begin{equation}
M_x = E(e^{tX}) = \int_0^\infty e^{tx} f_{G-L D}(x; \mu, \theta) \, dx = \int_0^\infty e^{tx} \frac{\mu \theta^2 (1 + e^{\mu} + \theta) e^{\mu}}{(1 + \theta)(-1 + e^{\mu} + \theta)^3} \, dx
\end{equation}
بناء توزيع احتمالي جديد (Gompertz-Lindely) لتقدير دالة المعولية ودالة المخاطرة

أ.م.د. ريسان عبد الامام؛ م.م. منتظر جمعة و م. محمد موسى

$$E(e^{tx}) = \frac{1}{2(1+\theta)\mu} \left(t\theta(2+\theta) + 2(1+\theta)\mu
ight)$$
$$+ \frac{1}{\mu} t(1-\theta)^{-2+\frac{t}{\mu}} \theta^2 \left(-\left(1+\theta\right)\left(t+\mu\right)Beta\left[1-\theta,1-\frac{t}{\mu},0\right]\right)$$
$$+ (1+\theta)(t-\mu)Beta\left[1-\theta,2-\frac{t}{\mu},0\right]) \right)$$

حيث أن [] تمثل دالة بيتا غير الكاملة ويستافت الصيغة (19) بالنسبة للمتغير t والعوسي عن t بالصفر في المشتقة وحسب درجة العزم يمكن الحصول على أي عزم من عزوم التوزيع الامركي k

$$E(x) = \frac{(1+\theta + \theta^2 Log[\theta])}{(\theta-1)^2(1+\theta)\mu}$$

$$\mu_k = E(x - E(x))^k$$

$$(x - y)^k = \sum_{j=0}^{k} \begin{pmatrix} k \end{pmatrix} (-1)^j x^{k-j} y^j$$

$$m_k = E(x - E(x))^k = E(x - m_1)^k = \sum_{j=0}^{k} \begin{pmatrix} k \end{pmatrix} (-1)^j x^{k-j} m_1^j$$

5. مقدارات الأمكان الأعظم

تعتبر طريقة الأمكان الأعظم من الطرق الشائعة الاستعمال لتقدير معلمات دوال التوزيعات الاحتمالية، ويفترض هذا الاستعمال والعلوم يقاسهما بيوندا تعذر في النظرية معيارا على بيانات (Fixed value) غير معروفة بالانتماء إلى منطق التوقعات الاستثنائية المستقل ويتم تقدير المعالم من خلال مساواة متسلسلة دالة الأمكان بالنسبة للمعلمات المراد تقديرها بالصفار، وما ميز طريقة الأمكان الأعظم احتكاكهما لخصائية عدم التغير أو التباين (Invariant).

$$L = \prod_{i=1}^{n} f_{GL}(x_i | \mu, \theta)$$

$$\prod_{i=1}^{n} f_{GL}(x_i | \mu, \theta) = \prod_{i=1}^{n} \frac{\mu \theta^2 \left(1 + e^{x_i \mu} + \theta\right)e^{x_i \mu}}{(1+\theta)(-1 + e^{x_i \mu} + \theta)^3}$$

$$lnL = n(2Log[\theta] - Log[1 + \theta] + Log[\mu]) - 3 \sum_{i=1}^{n} Log[-1 + e^{x_i \mu} + \theta]$$
$$+ \sum_{i=1}^{n} Log[1 + e^{x_i \mu} + \theta] + \mu \sum_{i=1}^{n} x_i$$

وللحصول على دالة الأمكان في نهايته العظمى يتم استفتات الصيغة (22) بالنسبة إلى المعالم المجهولة كالآتي:
وضمالة المعادلات (23) و(24) للصفرة. وتجد تلك المعادلات بالاعتماد على أحد الطرق العددية لإعداد المقدرات حيث تم تطبيق طريقة نيوتون رافسون والخاصة بطريقة الإمكان الأعظم.

باستخدام خاصية الثبات (Invariant) لمقدرات طريقة الإمكان الأعظم يمكن الحصول على مقدر دالة المخاطرة باستخدام طريقه الإمكان الأعظم من خلال تعويض النتائج التي يتم الحصول عليها من مقدرات الإمكان الأعظم للمعلمات الخاصة بتطبيق جومبيريز لينديلي كما في المعادلات التالية:

\[
\hat{\lambda}_{GL}(x; \mu, \theta) = \frac{\hat{\lambda} \cdot (e^{\mu x} + \hat{\theta})}{(1 + \hat{\theta} \cdot (e^{\mu x} + \hat{\theta} - 1)^2}
\]

\[
\hat{\lambda}_{GL}(x; \mu, \theta) = \frac{\mu \cdot e^{\mu x} (1 + e^{\mu x} + \hat{\theta})}{(e^{\mu x} + \hat{\theta} - 1)(e^{\mu x} + \hat{\theta})}
\]

6. تطبيق توزيع G-LD

في هذا القسم نستخدم مجموعة بيانات حقيقية لإعداد أن توزيع G-LD D من متغيرين GD وتوزيع لينديلي LD في الجدول (I) اذن تمثل مدة بقاء الأحيائي المعرض للضغط. إناث المرضى عند مستوى اجراء 90% لحين الفشل أو البت، حيث تم الاستعانة بالمصدر [7] بالنسبة للبيانات.

جدول (1): مدة بقاء للإيبيوكسي المعرض للضغط المستمر لحين الفشل بالساعات

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.0251</td>
<td>0.0886</td>
<td>0.0893</td>
<td>0.2501</td>
<td>0.3113</td>
<td>0.3451</td>
<td>0.4763</td>
<td>0.5650</td>
<td>0.5671</td>
<td>0.6566</td>
<td>0.6751</td>
</tr>
<tr>
<td>t</td>
<td>0.5600</td>
<td>0.5671</td>
<td>0.6566</td>
<td>0.6748</td>
<td>0.6751</td>
<td>0.6753</td>
<td>0.6769</td>
<td>0.8375</td>
<td>0.8391</td>
<td>0.8425</td>
<td>0.8645</td>
</tr>
<tr>
<td>t</td>
<td>0.9836</td>
<td>1.0483</td>
<td>1.0596</td>
<td>1.1773</td>
<td>1.1733</td>
<td>1.2570</td>
<td>1.2766</td>
<td>1.2985</td>
<td>1.3211</td>
<td>1.3503</td>
<td>1.3551</td>
</tr>
<tr>
<td>t</td>
<td>1.5733</td>
<td>1.7083</td>
<td>1.7263</td>
<td>1.8760</td>
<td>1.8740</td>
<td>1.7630</td>
<td>1.7746</td>
<td>1.8375</td>
<td>1.8503</td>
<td>1.8808</td>
<td>1.8878</td>
</tr>
<tr>
<td>t</td>
<td>2.0048</td>
<td>2.0408</td>
<td>2.0903</td>
<td>2.1093</td>
<td>2.1303</td>
<td>2.2100</td>
<td>2.2460</td>
<td>2.2878</td>
<td>2.3203</td>
<td>2.3470</td>
<td>2.3513</td>
</tr>
</tbody>
</table>

جدول (2): بين تلفيات المعادلات لوزيع G-LD وتوزيعات المقارنة

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(\hat{\mu})</th>
<th>(\hat{\theta})</th>
<th>(\hat{\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-LD</td>
<td>0.896569</td>
<td>4.05076</td>
<td>-</td>
</tr>
<tr>
<td>GD</td>
<td>0.121567</td>
<td>-</td>
<td>3.38531</td>
</tr>
<tr>
<td>LD</td>
<td>-</td>
<td>0.794783</td>
<td>-</td>
</tr>
</tbody>
</table>

250
بناء توزيع احتمالي جديد (Gompertz-Lindely) لتقدير دالة المعولية ودالة المخاطرة

أ.م.د. ريسان عبد الامام؛ م.م. منتظر جمعة و م. محمد موسى

(شكم 5) pdf pdf pdf pdf

251
جدول (5): مقدارات دالة التوزيع التراكمي ودالة المهيمنة ودالة المخاطرة للبيانات الحقيقية

<table>
<thead>
<tr>
<th>t</th>
<th>CDF</th>
<th>RF</th>
<th>HF</th>
<th>t</th>
<th>CDF</th>
<th>RF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0251</td>
<td>0.006687</td>
<td>0.993313</td>
<td>0.269475</td>
<td>1.746</td>
<td>0.532458</td>
<td>0.467542</td>
<td>0.60945</td>
</tr>
<tr>
<td>0.0886</td>
<td>0.023883</td>
<td>0.976117</td>
<td>0.280587</td>
<td>1.763</td>
<td>0.53729</td>
<td>0.46271</td>
<td>0.612546</td>
</tr>
<tr>
<td>0.0891</td>
<td>0.02402</td>
<td>0.97598</td>
<td>0.280675</td>
<td>1.7746</td>
<td>0.540571</td>
<td>0.459429</td>
<td>0.614649</td>
</tr>
<tr>
<td>0.2501</td>
<td>0.06932</td>
<td>0.930681</td>
<td>0.309971</td>
<td>1.8275</td>
<td>0.555381</td>
<td>0.444619</td>
<td>0.62413</td>
</tr>
<tr>
<td>0.3113</td>
<td>0.087129</td>
<td>0.912871</td>
<td>0.321498</td>
<td>1.8375</td>
<td>0.558152</td>
<td>0.441848</td>
<td>0.625902</td>
</tr>
<tr>
<td>0.3451</td>
<td>0.097094</td>
<td>0.902906</td>
<td>0.327948</td>
<td>1.8503</td>
<td>0.561684</td>
<td>0.438316</td>
<td>0.62816</td>
</tr>
<tr>
<td>0.4763</td>
<td>0.136561</td>
<td>0.863439</td>
<td>0.353509</td>
<td>1.8808</td>
<td>0.570036</td>
<td>0.429964</td>
<td>0.633499</td>
</tr>
</tbody>
</table>
المصادر

a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London, (115), 513-583.

Constructing A New Probability Distribution (Gompertz-Lindely) to Estimate the Reliability Function and the Risk Function

Assist. Prof. Dr. Ressan A. Zalan
ressan.zalan@uobasrah.edu.iq
Statistics Department, College of Administration and Economics, Basrah University, Basrah, Iraq

Muntather J. Mehdi
montather.jumaa@uobasrah.edu.iq
Statistics Department, College of Administration and Economics, Basrah University, Basrah, Iraq

Mohammed M. Mohsin
mohammed.mohsin@uobasrah.edu.iq
Statistics Department, College of Administration and Economics, Basrah University, Basrah, Iraq

Article Information

Abstract

In this paper, a new elastic probability distribution was formed by Gompertz-Lindely, a distribution resulting from the combination of the two continuous distributions, Gompertz and Lindley, as measurement parameters for the Gompertz distribution. A random variable then follows the Lindley distribution to produce the probability distribution. Gompertz–Lindley probability distribution is the result of a random variable that follows the Lindley distribution for the Gompertz distribution. The statistical and structural properties of the distribution and the shapes taken by the curves of the probability density function and the risk function were derived, as well as their parameters, which were estimated using the Maximum Likelihood Method. Applying it to a sample of real data represented by continuous survival periods until death served to show how effective distribution is at representing a sample of data. Compared to several traditional distributions, it has been demonstrated that the Gompertz-Lindley distribution fits the data the best.