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1. Introduction  
Some researchers focus on time series topics because of their importance in their studying the 

behavior of different phenomena during specific time periods through their analysis and 

interpretation. The aim of time series analysis is to describe the characteristics of the phenomenon, 

build a model and predict future based on what happened in the past. Phenomena that are 

fluctuations with time such as financial time series, it becomes inappropriate to apply linear models 

because some assumptions about random errors are not fulfilled, such as the mean errors are equal 

to zero , the variance is fixed with time and the errors are independent . which imposed a new 

challenge on scientists. so that non-linear models were proposed to take into account the problem of 

fluctuations in the time series, and to improve the matching of the model to the data and the ability 

to explain the fluctuations that occur in the different time series. Robert F. Engle in 1982 presented 

[10] new class of models called Autoregressive Conditional Heteroscedasticity models (ARCH(p)) 

to treats the problems in ARMA models especially in financial time series which some fluctuations 

(Volatility) associated with time. ARCH(p) model has been generalized by Bollerslev 1986[5] , 

who proposed the so-called Generalized Autoregressive Conditional Heteroscedasticity (GARCH). 

Nelson  in 1991[17] proposed which were known an Exponential Generalized Autoregressive 

Conditional Heteroscedasticity models (EGARCH) to treat Asymmetric time series by developing a 

formula that differs GARCH family models, through  adding equation of positives conditional 
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variance in stacte of  placing constraints on the model's parameters, but by formulating conditional 

variance equation in a way that sets the logarithm of the variance rather than the variance itself. 

positive. This invalidates a limitation on the model parameters as in the GARCH model, according 

to the exponential function structure, the range of the function is always positive, that is, the 

conditional variance is always positive and there is no “positive” or “negative” on its parameters 

and these models perform a specific function, which is to stabilize the variance, that is, to make the 

variance permanent and independent on time. For this reason, two types of variance will be 

exposed. First, conditional variance and the non-conditional variance for the same reason cannot be 

used for these models in order to predict the future of the time series only after using the models of 

a mixed of ARMA with GARCH models known as ARMA-GARCH. and this paper  aims to build 

The best model for predicting daily fluctuations in OPEC oil prices for the period from 2/1/2003 to 

30/6/2021 by applying a number of conditional autoregressive models of Heteroscedasticity such as 

GARCH models, EGARCH models, ARMA-GARCH . 

2. Autoregressive Conditional Heteroscedasticity models (ARCH(p)) 

[12][1][9][10][4] 
This model was first proposed by (Engle, 1982) through his research on the variance of inflation 

in the United Kingdom. This type of model led to a major transformation in econometrics by filling 

the gap in the ARMA model, which assumes the stability of variance. The ARCH model has the 

ability to capture a set of fluctuations in the financial series, so these models can be treats  the 

problem of Heteroscedasticity of random error variance by making it variates in time and it is 

defined as follows: 
 

                            mean equation           

     =                  ̴                         

   
           

        
          

  (1) 

 

   > 0,    αi ≥ 0   , i = 1,2, …...,p   ) the parameters of   the model )  

   : return series . 

µ  : the mean of the series of stationary returns. 

     : the residuals series is unrelated 

    : A series of randomly located variables with mean 0 and variance of 1. 

  
 : represents the conditional variance . 

 

Equation (1)  is known as the volatility equation and can be written as: 

  
      ∑    

      
  

               volatility equation
  (2) 

 

The unconditional variance of      is[20] : 
 

         
  

  ∑   
 
   

                                      

The process is stationary  if the sum parameters of the autoregressive parameters are positive 

and less than one that is: 
 

∑  

 

   

   

3. Generalized Autoregressive Conditional Heteroscedasticity Model 

(GARCH(p,q)) [2][9][18][12][20][19] 
This model was proposed by (Bollerslev, 1986) as an extension of the ARCH model by adding 

many parameters to describe the volatility process of asset returns, which is known as the 

generalized ARCH model and is denoted by GARCH (p,q) and defined as follows: 
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Whereas : 

   > 0, (     ≥ 0  , i = 1,2, ….. ,p)  , (     ≥ 0 ,  j = 1,2, …… , q) and that      ∑   
 
     ∑   

 
      

the unconditional variance of (  )[ 20]  
 

         
  

  ∑    ∑   
 
   

 
   

        

The volatility shocks are more stationary in the case of approaching the correct one, and despite 

of the importance of ARCH (p) and GARCH (p,q) in modeling financial time series, but they are 

dissatisfaction for some economic analysts, especially in the matter of diagnosing the relationship 

between conditional variance and random error square, where this relationship is achieved in the 

case that the studied variables have the same effect size and the same sign, but in the case where the 

fluctuations are moving in opposite directions and with amplitude of varying effects, these models 

do not take into account those fluctuations. The dissatisfaction of the analysts economists led to the 

emergence of several models, such as Exponential GARCH. 

4. Exponential Generalized Autoregressive Conditional Heteroscedasticity Models 

(EGARCH) [1][6][10][17][12] 
    This model was proposed by Nelson in (1991) to treats the asymmetry of fluctuations around 

shocks. This model is a development of the generalized GARCH model presented by (Bollerslev, 

1986) that assumes symmetry of oscillations and the positive constraint imposed on the parameters. 

EGARCH model describes the relationship between the previous values of the random error and the 

logarithm of conditional variance, there is constraints on the parameters which ensuring that there 

are no negative effects of the conditional variance allowing to avoid the constraints of positive 

parameters (   ,   )  

The model EGARCH(p, q), (p ≥1) & (q ≥1) can be written as[1] 

           
    =                                                  

           
      ∑  

 

   

   (    
 )  ∑  

 

   

{|
    

    
|  √

 

 
}    

    

    

 (4) [1] 

   

      
      ∑  

 

   

      ∑  

 

   

   (    
 ) (5) [10] 

 

Where: 

            |  |    |  |                                  ⁄  

       ⁄    {
|    |

    
}  √

 

 
  

 Where    ,                  ،               are the parameters not required to be 

positive, Zt is a standard normal variable       allows the magnitude and the signal (Zt) to be 

separate effects from fluctuations, and that (Zt) are positive then the function       is linear with 

parameters (θ+γ) and if (Zt) are negative, then       is linear with the parameters (θ-γ) , This 

situations allows for asymmetry in the ups and downs of the stock price, which in turn is very 

useful, especially in the context of securities pricing, where the parameter α represents the volume 

effect or the symmetric effect of the model and representing the measure of stationary in conditional 



Prof. Dr. Mohammed H. Al-Sharoot and 
Hanan A.  Al-Rashide 

Forecasting Volatility of OPEC Oil Prices Using EGARCH and ARMA-
GARCH Models  

 

403 

fluctuations no matter what happens in the market . When β is large, the volatility takes a long time 

to return to the crisis in the market. And the parameter γ measures the asymmetry or the effect of 

lifting, and this criterion is so important that the EGARCH model allows to test the asymmetry if 

γ=0 then the model is symmetric. 

5.    The Hybrid model  ARMA (n, m) - GARCH (p, q) [14][15][16][6][7][8]  
We know that ARMA models (n,m) have conditional mean of the prior information and 

conditional variance of the error. where GARCH models (p,q) have a constant conditional mean of 

the prior information and non-constant conditional variance of the error. If each of the conditional 

conditions is dependent on the past (non-constant), the two models will be combined with a model 

known as the hybrid ARMA (n,m) - GARCH (p,q) model defined follows: 

      ∑      

 

   

     ∑           

 

   

 
(6) 

 

   =                                         

  
    ∑      

 

 

   

 ∑      
     

 

   

 

Where: 

   : ARMA (n,m)  

     : is white noise with a mean of zero and a variance equal to one . 

    is conditional variance and it is a function of the time difference of    (    ,     ) .  

So it was mixed ARMA models with GARCH models where ARMA model are used for 

modeling and fitting conditional mean represents the conditional mean , and use GARCH model for 

modeling and fitting conditional variance, and it represents conditional variance. 

6. Augmented Dickey-Fuller Test [14][ 2][ 3]  
    The Augmented Dickey-Fuller test (ADF) is used to detect the presence of a unit root in the 

univariate test, i.e. to test whether the time series is strong stationary or not. The ADF test is defined 

follows: 

               ∑        

 

   

        
 (7) 

            ,
    is represents the time series to be tested . 

k: the number of shifts . 

  ~ iid (0, σ²) and              the model parameters. 

the hypothesis is : 

       The time series is non- stationary on mean. 

. 

         The time series is stationary on mean. 

The test statistic is : 

  
 ̂

    ̂ 
                                      (8) 

 

7. Ljung - Box Test   [13] [2] 
 The test was proposed by (Ljung & Box) in 1978 is used to test whether the errors of the 

model fitted a time series  are random : 

                                                     
                                   . 
 

Using the following statistics: 



PISSN (1681-6870) EISSN (2790-2293) (2023); Issue 54 Journal of AL-Rafidain University College for Sciences  

 

404 
 

   (      ∑
 ̂ 
 

   

 

   

)       
  (9) 

 

   : the sample size (number of time series observations).  

  : the number of backshifts for the autocorrelation .  

  :The number of parameters estimated in the model .  
 

8. Lagrange Multiplier- ARCH Test [2] [3]    

Proposed by Engle in 1982 to test whether the errors follow ARCH process is based on 

estimating the equation under study  

  
           

        
               

                (10) [2] 
 

the test statistic as follows: 

               ̂      
  

(11) [2] 

 

n : the sample size. 

r :  The number of parameters estimated in the model  

LM : stands for Lagrange multiplier. 

  ̂ : the coefficient of determination estimated from  ̂   
   ̂   

      ̂   
  . 

 

  ̂  
   

   
    

   

   
                           ̂                                       

 

SSR : Sum of squares of the regression. 

SST: Total sum of squares. 
 

9. Estimation [14] 
Using the Maximum likelihood Method to estimate GARCH parameters (p, q) as follows:  

        ⁄   
 

√    
 
   ( 

 

 

  
 

  
 )         

 
(12) [14] 

 

   The natural logarithm (L) function of vector parameters ϑ                      
  

We can write as follows: 

     ∑     

 

   

     (13) 

the conditional logarithm of the parameter vector   is 

                 ⁄    

      
 

 
       

 

 
     

   
 

 
(
  
 

  
 )   

                   
 (14) 

 

The following derivatives are calculated:   

   
  

 
   

   
  

   
 

  
 

The logarithm of the conditional probability density function is derived for the variable    , αi , βj  .  

10.              Model selection criteria[13] 
There are several criterions to choose the best model among the proposed fitted models for the 

studied data, these criteria was developed to select the most common model as follows : 
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I. Akaikes Information Criterion (AIC) [13][14] 

This criterion was introduced by Akaike in 1974 an information standard known as (AIC) used 

to evaluate the suitability of time series models, we choose the model that gives the least AIC . The 

AIC formula can be written as: 

         ̂ 
         (15) 

 

n: the sample size. 

 ̂ 
  

 

   
∑     ̂  

 

 

   

        (16) 

L: the number of parameters in the model. 
 

II. Schwarz Information Criterion (SIC) [2][14]    
In 1978, Schwarz and Akaike proposed another criterion for determining the degree of the 

model known as the Schwartz Information Criterion, (SIC) and defined as follows:  

          ̂ 
            (17) 

n: the sample size. 

 ̂ 
  

 

   
∑     ̂  

 

 

   

  

This criterion addressed the problem of over-estimation in the AIC standard, and make the 

penalty of the additional parameters stronger than the penalty in the AIC standard .       

III. Hannan- Quinn Criterion (HQC)[13][2]           

 In 1979, this criterion was proposed by (Quinn) and (Hannan) HQC to determine the rank of 

the model and its formula: 

       ̂ 
         (

     

 
)                     (18) 

As the second limit above decreases as quickly as possible at the stability of the rank due to the 

repeated logarithm. 

11.  Forecasting[10][12] 
Forecasting is one of the most important goals of model building in time series, as it represents 

the last stage of time series analysis that cannot be reached without passing all diagnostic tests to 

validate the model used in forecasting. 

Below is the prediction for the GARCH model and in the same way for all extensions of the 

model and from them EGARCH, ARMA- GARCH 
  

Suppose for the case GARCH(p, q)   of p = 1, q = 1, GARCH (1,1) and my agencies: 

         
  |       ̂   ̂    

 
     ̂          

Predicting one future value   

          
   |       ̂   ̂      

 |      ̂       

        ̂    ̂         ̂        

        ̂   ( ̂    ̂ )        
Prediction of value L      

          
   |       ̂    ̂     

     |      ̂             |      

  ̂    ̂             ̂              =       

        ̂   ( ̂    ̂ )            

Thus, the general formula for predicting GARCH (p, q) models is as follows: 

        ̂  ∑ ̂        

 

   

 ∑ ̂        
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12.   Forecasting accuracy measures[11]  
The following measures are used to measure forecast accuracy , they are very important to know 

the chosen model. 

i. Root Mean Square Error (RMSE) [11][12] 

This criterion is defined as the square root of the squared difference between both the real 

variance and the estimated variance   
 , and since there is no significant real variance the time series 

observations   
  are used, thus the RMSE formula is given as: 

      √
 

 
 ∑   

    
 ̂ 
   

 

   

    (19) 

 ̂ 
  : represents the estimated variance. 

  
     : represents the actual contrast. 

ii. Mean Absolute Error (MAE) [11][12]  

This measure is defined as the absolute difference between the actual variance and forecast 

variability measures, and it has the following formula: 

    
 

 
∑|  

    ̂ |

 

   

  (20) 

13.  Applied Side 
This aspect includes an applied study on the construction and selection appropriate fluctuation 

models for the daily OPEC oil prices, excluding the stopping days, for the period from (2/01/2003) 

to (30/06/2021) where the number of observations are 4769, using conditional autoregressive in  

Heteroscedasticity , ARCH and GARCH. 

Figure (1): shows the time series of daily oil prices 
 It is clear from Figure (1) that the time series of oil prices is non -stationary in mean and  

variance has high volatility, which indicates the presence of fluctuations in the variance  . for the 

purpose of revealing the stationary of the time series of daily oil prices, the Augmented Dickey-

Fuller test and the test results were calculated as shown in Table (1) 
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Table (1): shows the Dickey-Fuller developer Time Series Test 

 

We observe from Table (1) that the p-value is (0.3176) , we cannot reject the null hypothesis 

which means that the time series is non-stationary using the Box-Ljung test and through its Q 

statistic, we get the results as shown in Table (2). 

Table (2) shows the autocorrelation, partial autocorrelation and Box-Ljung time series test 

functions 

 

Table (2) shows the significance of all autocorrelation which means rejecting the null 

hypothesis, and accepting the alternative hypothesis that says there is a sequential autocorrelation 

Null Hypothesis: OP has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=31)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.932124  0.3176

Test critical values: 1% level -3.431540

5% level -2.861951

10% level -2.567031

*MacKinnon (1996) one-sided p-values.

Date: 03/25/22   Time: 09:19

Sample: 1/02/2003 6/30/2021

Included observations: 4768

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.999 0.999 4761.4 0.000

2 0.998 -0.180 9510.7 0.000

3 0.996 0.029 14248. 0.000

4 0.995 -0.023 18973. 0.000

5 0.993 -0.024 23685. 0.000

6 0.992 -0.023 28383. 0.000

7 0.990 0.014 33068. 0.000

8 0.989 -0.047 37739. 0.000

9 0.987 0.011 42396. 0.000

10 0.985 -0.014 47038. 0.000

11 0.984 -0.024 51665. 0.000

12 0.982 0.011 56277. 0.000

13 0.980 -0.030 60874. 0.000

14 0.979 -0.004 65455. 0.000

15 0.977 -0.033 70020. 0.000

16 0.975 -0.020 74568. 0.000

17 0.973 -0.005 79099. 0.000

18 0.971 -0.006 83612. 0.000

19 0.969 0.014 88109. 0.000

20 0.967 -0.020 92588. 0.000

21 0.965 -0.016 97049. 0.000

22 0.963 -0.009 101493 0.000

23 0.961 0.000 105918 0.000

24 0.959 -0.012 110325 0.000

25 0.957 -0.024 114713 0.000

26 0.954 -0.031 119082 0.000

27 0.952 -0.017 123431 0.000

28 0.950 0.009 127759 0.000

29 0.947 -0.015 132068 0.000

30 0.945 -0.020 136356 0.000

31 0.943 0.008 140622 0.000

32 0.940 -0.013 144869 0.000

33 0.938 -0.003 149094 0.000

34 0.935 -0.003 153297 0.000

35 0.933 -0.004 157480 0.000

36 0.930 -0.032 161641 0.000
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between the observations . and So that the increases are equal and independent of stationary in 

mean and variance, the returns     can be determine as follows : 

     
  

    
                  

where    is return at time  ; In is the natural logarithm ;    is the current daily stock price at time 

t, and      is the previous daily stock price at time t-1. table (3) shows a summary for some 

descriptive measures of the returns series. 

Table (3): shows some descriptive measures of the return series 

 

It is clear from Table (3) that the mean of the return series is equal to (0.000188) with a standard 

deviation (0.020517), and the value of the skewness coefficient is (-1.190069), which indicates that 

the distribution of the returns series contains a tail to the left, and that the kurtosis coefficient is 

equal to (43.52730), which It indicates that the series has thick ends and is characterized by flatness 

and this indicates dispersion and therefore differs from the normal distribution, and this was 

confirmed by the Jarque-Bera test where the p-value corresponding to the test was (0.000000), 

which indicates that the data of the returns series do not follow the normal distribution at the level 

of significant (0.05). The graph of the return series can be illustrated in Figure (2). 

 

Figure (2): shows the series of returns to daily oil prices 



Prof. Dr. Mohammed H. Al-Sharoot and 
Hanan A.  Al-Rashide 

Forecasting Volatility of OPEC Oil Prices Using EGARCH and ARMA-
GARCH Models  

 

409 

From figure (2) we find that the series contains periods of volatility, followed by periods of 

relative stagnation in fluctuations, and so on over time. 

Table (4): shows the Dickey-Fuller Extended Return Series Test 

 

It is clear from Table (4) that the (p-value) is equal to (0.0000) Which we rejecting the null 
hypothesis and accepting the alternative hypothesis that the return series is stationary. 

To find out if the series has autocorrelation or not , we will calculate its Q statistic and the 

functions of autocorrelation and partial autocorrelation, as shown in the following table (5): 

Table (5): shows the autocorrelation, partial autocorrelation and Box-Ljung test  

functions for the Returns Series 

 

Null Hypothesis: RT has a unit root

Exogenous: Constant

Lag Length: 13 (Automatic - based on SIC, maxlag=31)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -15.31331  0.0000

Test critical values: 1% level -3.431543

5% level -2.861952

10% level -2.567032

*MacKinnon (1996) one-sided p-values.

Date: 03/25/22   Time: 10:23

Sample (adjusted): 1/02/2003 6/29/2021

Included observations: 4767 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.134 0.134 85.155 0.000

2 0.017 -0.000 86.600 0.000

3 0.032 0.030 91.423 0.000

4 0.053 0.046 105.03 0.000

5 0.071 0.058 128.82 0.000

6 -0.088 -0.109 166.13 0.000

7 0.076 0.103 193.82 0.000

8 -0.000 -0.031 193.82 0.000

9 0.034 0.039 199.50 0.000

10 0.034 0.024 204.90 0.000

11 -0.035 -0.038 210.81 0.000

12 0.055 0.044 225.45 0.000

13 0.004 0.006 225.54 0.000

14 0.096 0.082 269.55 0.000

15 -0.004 -0.026 269.64 0.000

16 0.019 0.027 271.36 0.000

17 0.062 0.033 289.83 0.000

18 0.009 0.005 290.18 0.000

19 -0.017 -0.044 291.58 0.000

20 -0.033 -0.005 296.85 0.000

21 0.068 0.051 318.80 0.000

22 0.003 -0.017 318.85 0.000

23 -0.004 0.008 318.91 0.000

24 0.042 0.032 327.27 0.000

25 0.022 0.012 329.57 0.000

26 0.072 0.050 354.46 0.000

27 -0.041 -0.047 362.42 0.000

28 0.025 0.020 365.41 0.000

29 0.022 0.011 367.73 0.000

30 -0.016 -0.027 368.91 0.000

31 0.038 0.029 375.85 0.000

32 -0.055 -0.048 390.23 0.000

33 -0.003 -0.013 390.28 0.000

34 -0.020 -0.009 392.24 0.000

35 0.028 0.024 395.99 0.000

36 -0.013 -0.027 396.81 0.000
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It is clear from the values of the p-value column in Table (5) that the null hypothesis which 

states (there is no sequential autocorrelation of the return series) and the acceptance of the 

alternative hypothesis which states that (there is sequential autocorrelation of the return series) is 

below the level of significance (0.05), which indicates that the existence of a sequential 

autocorrelation between the observations of the returns Series. 

To check whether the studied series is linear or not, the Tsay- test was used. The test results 

were as follows: 

Table (6): shows the results of the nonlinearity test for the studied time series 

Type of Test Statistic p-value 

Tsay test 2.459697 0.0004 

    And through the (p-value) mentioned in Table (6) are less than (0.05) this indicates that the 

time series is a non-linear series.and using the Box-Jenkins methodology to build the model and 

forecast on the returns series observations, where a set of ARMA models were reconciled and their 

parameters were estimated by using maximum likelihood estimation (MLE), which are shown in 

Table (7) 

Table (7): shows the compatibility of a group of models with some ARMA model selection 

criteria 

Model AIC* BIC HQ 

ARMA(2,2) -4.958823 -4.950683 -4.955963 

ARMA(1,2) -4.956094 -4.949311 -4.953711 

ARMA(2,1) -4.955371 -4.948588 -4.952988 

ARMA(1,0) -4.952462 -4.948392 -4.951032 

ARMA(0,1) -4.952279 -4.948209 -4.950849 

ARMA(1,1) -4.952043 -4.946616 -4.950136 

ARMA(2,0) -4.952043 -4.946616 -4.950136 

ARMA(0,2) -4.951980 -4.946553 -4.950073 
 

It is clear from Table (7) that the best model is ARMA(2,2) because it has the lowest 

differentiation criteria (AIC, SIC, HQ) . 

Using the greatest possibility method, the parameters  of model were estimated, which are 

shown in Table (8). 

Table (8): shows the estimated values of ARMA(2,2) model parameters. 

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.000191 0.000545 0.349781 0.7265 

AR(1) 0.198827 0.022434 8.862736 0.0000 

AR(2) 0.668094 0.014312 46.68044 0.0000 

MA(1) -0.084249 0.022929 -3.674279 0.0002 

MA(2) -0.708605 0.015163 -46.73272 0.0000 

SIGMASQ 0.000410 1.83E-06 224.5593 0.0000 

     
R-squared 0.025320 Mean dependent var 0.000189 

Adjusted R-squared 0.024297 S.D. dependent var 0.020513 

S.E. of regression 0.020262 Akaike info criterion -4.958823 

Sum squared resid 1.955526 Schwarz criterion -4.950683 

Log likelihood 11830.31 Hannan-Quinn criter. -4.955963 

F-statistic 24.74667 Durbin-Watson stat 1.960524 

Prob(F-statistic) 0.000000    

From Table (8) we notice that all parameters of the model are significant. Residual analysis is 

an essential part and an important stage to know the validity of the model under study. This process 

is carried out either using statistical tests or using graphs, as shown in Figure (3). 
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Figure (3): shows the frequency chart and the overall descriptive statistics for the series of 

residuals resulting from matching the ARMA model (2, 2) 

We notice from Figure (3) that the kurtosis coefficient was equal to (11.5428), so it is greater 

than 3, which confirms that the residuals are not distributed according to the normal distribution 

with negative skew modulus equal to (-0.49777). Thus, the residuals lost the state of a normal 

distribution. Also , in order to determine the nature of the distribution of the observations of the 

residual series, the (Kolmogorov-Smirnov) test was applied and the test results were as follows: 
 

Table (8): Kolmogorov-Smirnov test for series of residuals 

p-value D Distributions 

3.6e-15 0.52114 Normal 

0.14430 0.03222 Student’s-t 

 

Through the table (8) , it can be seen that the probability values of the (student’s-t) distribution 

test statistics is greater than the probability (0.05), while the probability value of the Normal 

distribution is less then (0.05), this indicates that the residual series follows the (student’s-t) 

distribution. 

 ARCH and Ljung-Box test for ARMA residuals 

To detect the presence of the effect of ARCH on the series of residues, the Ljung-Box test was 

used, and the results were as shown in Table (10). 
Table (10): Ljung-Box Test and Arch-LM Test for ARMA Residues 

Ljung-Box test Arch-LM test 

Lag Q-Statistic p-value Lag Obs*R-squared p-value 

5 21.176 0.0000 5 641.9976 0.0000 

10 94.867 0.0000 10 755.5626 0.0000 

15 174.93 0.0000 15 893.8865 0.0000 

20 198.44 0.0000 20 1237.231 0.0000 

25 221.84 0.0000 25 1291.860 0.0000 

From the table (10), it can be seen that all p-values are less than 0.05 which mean that the null 

hypothesis that says of residuals has effect of Arch is not accepted, and we also notice the results of 

the Ljung-Box test that the (p-values ) of the residual series values and its squares are less than 

(0.05), which indicates the existence of a autocorrelation, and that the series of residuals is 

characterized by the property of Heteroscedasticity 
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 Estimation 

i. Estimation of the GARCH model 

By studying the autocorrelation and partial functions, and depending on the tests used in 

diagnosing the degree of models described in the previous paragraphs, four models can be 

suggested when the random error follows the Student's-t distribution , shown in Table (11) where 

the described models and parameters were estimated and criteria were calculated choose models as 

follows: 
 

Table (11): shows the estimation of GARCH models using Student's t distribution of errors 

 

From Table (11) we find that the best model according to AIC, SIC and H-QIC selection criteria 

is GARCH(1,1) shows estimated equation is 

              √                      
               

         

ii. Estimation of the EGARCH model 

 Table (12) shows the estimation of the model parameters, as well as the criteria for choosing 

the appropriate model, as follows: 
 

Table (12): shows estimating EGARCH models using Student's t distribution of errors 

 It is noted from Table (12) that the best studied model within the EGARCH models, which will 

be relied upon is EGARCH(1,1), according to the criteria for choosing the model AIC, SIC, H-Q 

 The form can be written as follows: 

            
√
 
                     (    

 )         |
    

√    
 √ 

 
|         

    

√    
 

       

iii. Estimation of ARMA-GARCH 

 The ARMA-GARCH model was applied, model parameters were estimated, and criteria for 

choosing the best model were calculated. As shown in Table 13. 

MODEL 
GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

Estimate 

Mean 

Equation 
µ 0.000490 0.000494 0.000492 0.000491 

Variance 

Equation 

Ω 2.00E-06 1.93E-06 2.12E-06 2.78E-06 

α1 0.088228 0.098376 0.094049 0.089671 

α2  -0.012393  0.032914 

β1 0.908275 0.910665 0.828768 0.514804 

β2 
  

0.073490 0.357757 

AIC -5.617901 -5.617536 -5.617510 -5.617061 

SIC -5.609757 -5.608034 -5.608008 -5.606202 

H-Q -5.615040 -5.614198 -5.614172 -5.613246 

MODEL 
EGARCH(1,1) EGARCH(1,2) EGARCH(2,1) EGARCH(2,2) 

Estimate 

Mean 

Equation 
µ 0.000201 0.000206 0.000204 0.000232 

Variance 

Equation 

Ω -0.199167 -0.192197 -0.229505 -0.344574 

α1 0.141058 0.176869 0.163420 0.132769 

α2   -0.068685 0.114223 

β1 -0.058456 -0.039854 0.811150 -0.096683 

β2 
 

-0.058322 
 

0.240562 

   0.989331 0.989793 0.176640 0.741265 

AIC -5.628635 -5.628502 -5.628542 -5.628494 

SIC -5.619134 -5.617643 -5.617683 -5.616278 

H-Q -5.625297 -5.624687 -5.624727 -5.624202 
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Table (13): shows estimating ARMA-GARCH models using Student's t distribution for errors 

 From the results of table (13) we find that the best model will be ARMA(1,1)-GARCH(1,1) 

according to the selection criteria and the model can be written as follows : 

   =0.000652      
  √                       

              
  *    

 

Choose the appropriate model 

 Table (14) illustrates a comparison between the criteria for choosing the appropriate model  

Table (14): shows the comparison of GARCH, EGARCH and . models GARCH-ARMA 

HQ SIC AIC Models 

-5.617901 -5.609757 -5.61504 GARCH(1,1) 

-5.628635 -5.619134 -5.625297 EGARCH(1,1) 

-5.62118 -5.61168 -5.617842 GARCH(1,1) – (1,1)ARMA 

 We conclude from Table (14) that the EGARCH(1,1) model is superior model according to the 

criteria AIC, SIC, and H-Q. 

Check the fit of the model. 

 Using Ljung-Box to find out the extent of residual correlation and the LM ARCH test to check 

the stability of variance for this model as in Tables (15) and (16). 
 

Table (15): shows the Ljung-Box test for series of residuals 

Lag Q-Stat Prob* 

5 5.8658 0.319 

10 10.106 0.431 

15 13.059 0.598 

20 31.605 0.048 

25 39.152 0.036 

30 50.359 0.011 

35 54.466 0.019 

 We show from table (15) that the probability value in the lags (5,10,15) was greater than (0.05), 

which indicates the acceptance of the null hypothesis which states that there is no autocorrelation 

between the squares of the residuals, while in lags (20,25,30, 35) the probability value is less than 

(0.05), which means that the null hypothesis is rejected and the alternative hypothesis is accepted, 

that is, there is which autocorrelation between the residual squares. 
 

Table (16): showing the LM ARCH residual test 

 

Heteroskedasticity Test: ARCH

F-statistic 0.916081     Prob. F(1,4764) 0.3386

Obs*R-squared 0.916290     Prob. Chi-Square(1) 0.3385

MODEL ARMA(1,1)-

GARCH(1,1) 

ARMA(1,1)-

GARCH(1,2) 

ARMA(1,1)-

GARCH(2,1) 

ARMA(1,1)-

GARCH(2,2) Estimate 

Mean 

Equation 
µ 0.000652 0.000656 0.000654 0.000666 

 

Variance 

Equation 

Ω 0.020154 0.019525 0.021232 0.009369 

α1 0.088159 0.096713 0.093407 0.104598 

α2  -0.010384  -0.062598 

β1 0.908299 0.910248 0.837716 1.402374 

β2   0.065150 -0.446029 

AIC -5.621180 -5.620811 -5.620765 -5.620518 

SIC -5.611680 -5.609954 -5.609908 -5.608304 

H-Q -5.617842 -5.616997 -5.616951 -5.616227 
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 From table (16), we note that the probability value corresponding to the test, which is equal to 

(0.3385) is greater than (0.05), which indicates that we accept the null hypothesis which states that 

the variance is homogeneous for the error and therefore there is no ARCH effect. 

Forecasting future volatility 

 After determining the appropriate model ، EGARCH(1,1) is using to predict the fluctuations as 

shown in Figure (4) 

 

Figure (4) shows the graph of the series of returns, the predicted values, and the prediction of 

volatility (variance) 

Volatility forecast performance 

 The purpose of the prediction within the sample is to test the predictive power of the model, so 

it is not necessary that the chosen model be the one that gives the best prediction. absolute error 

(MAE) as table (17) shows the results of these criteria 

Table (17) shows the comparison between each of the models GARCH(1,1) and 

EGARCH(1,1) and ARMA(1,1) - GARCH(1.1) based on accuracy criteria 

 It is clear from the table (17) that we note the superiority of the EGARCH model over the rest 

of the models according to the accuracy criteria, the root mean squares error and the mean absolute 

error, which in turn indicates that the model is very accurate and therefore is the best model for 

predicting daily oil price fluctuations. 
 

14. Conclusions and Recommendations 

 Conclusions 

1. The series of oil prices is non-stationary on mean and variance. 

2. The series of  return for oil prices does not follow the normal distribution. 

3. The series of returns to oil prices contains periods of fluctuation, followed by periods of 

relative stagnation over time. 

4. Oil prices series of returns is stationary on mean . 

MODEL RMSE MAE 

GARCH (1,1) 0.97464 0.82401 

EGARCH (1,1) 0.29843 0.15622 

ARMA(1,1) - GARCH  (1,1) 0.65540 0.50104 
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5. The advantage of the EGARCH (1.1) model over the GARCH(1,1) and ARMA(1,1) - 

GARCH(1,1) models for forecasting the future volatility of OPEC oil prices through 

standards AIC, SIC, H-Q and precision scales RMSE, MAE 

6. The conditional Autoregressive Heteroscedasticity models are more efficient in predicting 

the volatility. 

 Recommendations 

1. Use other comparison models such as GJR-GARCH, IGARCH and NGARCH. 

2. Use other methods to estimate model parameters such as QMLE. 

3. Use of GARCH family models to predict other financial time series to estimate and study 

the behavior of these series because they have the ability to explain the behavior of these 

series that is characterized by Heteroscedasticity of variance. 
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 ARMA-GARCHو EGARCH التنبؤ بتقلب أسعار نفط أوبك باستخذام نمارج

 حنان الرشيذي أ.د. محمد حبيب الشاروط
mohammed.AIsharoot@qu.edu.iq hananaallii7@gmail.com 

 ، العراق.القادسية، القادسيةجامعة  -الادارة والاقتصاد كلية  - الاحصاءقسم 
 

 المستخلص  معلومات البحث

جحميض بعض اٌسلاسً اٌضمىية بحمٍبها اٌىبيش مع مشوس اٌىلث، وخاصة   تواريخ البحث:

اٌسلاسً اٌضمىية اٌمحعٍمة بحشوة الالحصاد، وجٍه اٌمحعٍمة بحغيش أسعاس 

الأسهم أو حشوة اٌمعاملات اٌماٌية وأسىاق الأوساق اٌماٌية، واٌحي جحميض 

يجعٍها  مما اٌمشاهذاتبأوها غيش ثابحة مع مشوس اٌىلث بسبب جغيش سٍىن 

جعاوي مه مشىٍة اٌحغايشية. يهذف اٌبحث إٌى بىاء أفضً ومىرج ٌٍحىبؤ 

باٌحمٍبات اٌمسحمبٍية في سعش وفظ أوبه اٌيىمي مه خلاي جطبيك عذد 

 مخحٍف مه ومارج الاوحذاس اٌزاجي اٌمششوط ٌٍحغايش مثً ومارج

GARCH و  EGARCH وARMA-GARCHجحبع  ، وعىذ

جظهش اٌىحائح أن أفضً ومىرج ٌٍحىبؤ  Student's-t الأخطاء جىصيع

 AIC ، اسحىاداً إٌىEGARCH(1,1) بحمٍبات أسعاس وفظ أوبه هى

 .H-QICو SICو

 14/12/2022جاسيخ جمذيم اٌبحث: 

 28/2/2023جاسيخ لبىي اٌبحث: 

 31/12/2023جاسيخ سفع اٌبحث عٍى اٌمىلع: 

 

 

 
 الكلمات المفتاحية:

، EGARCHاٌسلاسً اٌضمىية، اٌحمٍبات، أسعاس وفظ أوبه، ومىرج 

 ARMA-GARCH ومىرج
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