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1. Introduction

In the last thirty years, the huge data have caused significant problems for the statistical
methods. In multiple regression applications, only a number of covariates is thought to be truly
related to the response. Thus, there is importance to do VS. In analysing the high dimensional data,
the VS helps to achieve to goals. It plays important role to achieve better model interpretation and
higher prediction precision. In the literature, a number of traditional VS methods has been
proposed, such as AIC and BIC, etc. From another side, regularisation methods, such as Lasso
(Tibshirani, 1996), SCAD (Fan and Li, 2001) and Elastic Net (Zou and Hastie, 2005) were
proposed for simultaneous parameter estimation and VS. However, when the number of covariates
is large it is not ease to formulate a parametric model. So, there is need to find model-free VS
approaches.

A model-free alternative to VS was provided through introducing the idea of sufficient
dimension reduction (SDR) by Cook (1998). The SDR focuses on replacing the original predictor
vector with low dimensional projection without losing any information about the regression. The
methods of SDR suffer from that the resulting directions are linear combinations of original
predictors. Number of testing procedures was proposed by Cook (2004) and Li et al. (2005) to
assess the effect of each covariate. Because of their inherent discreteness, these model free VS
methods are not stable as is the case in the classical VS methods (Brieman, 1996). Ni et al. (2005),
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Li and Nachtsheim (2006), Li (2007), Bondell and Li (2008) and Li and Yin (2008) incorporated
the regularisation methods into dimension reduction methods. Also, Wang and Yin (2008)
combined Lasso with MAVE (Xia et al. 2002) to propose sparse MAVE (SMAVE). Alkenani and
Yu (2013) incorporated adaptive Lasso (Zou, 2006), SCAD (Fan and Li, 2001) and MCP (Zhang,
2010) into MAVE to produce variables selection under SDR settings. Rahman and Alkenani (2020)
and Alkenani and Rahman (2021) proposed sparse MAVE with adaptive elastic net and elastic net
penalties, respectively.

Sparse MAVE versions, which are proposed in Wang and Yin (2008), Alkenani and Yu
(2013), Rahman and Alkenani (2020) and Alkenani and Rahman (2021), need no strong
assumptions about the covariates. However, these methods are very sensitive to outliers in y
because of employing least-squares formulation. Cizek and Hardle (2006) showed that MAVE is
very sensitive to outliers. Also, a robust version of MAVE(RMAVE) was proposed by the authors.
Yao and Wang (2013) propose a robust sparse MAVE (RSMAVE) depending on the robust MAVE
which is proposed in Cizek and Hardle (2006). Yao and Wang (2013) combined Lasso shrinkage
with RMAVE to produce robust sparse dimension reduction. RSMAVE (Yao and Wang, 2013)
inherits the advantages and disadvantages of their components.

Fan and Li (2001) showed that the Lasso produces biased estimates for the large
coefficients. The authors explained that the Lasso does not have the oracle property. The adaptive
Lasso was proposed by Zou (2006). The adaptive Lasso allows to penalise the different coefficients
by using adaptive weights. The adaptive Lasso estimates are consistent and have the oracle
property(Zou,2006).

The limitations of ALMAVE (Alkenani and Yu, 2013) and RSMAVE (Yao and Wang,
2013) motivate us to propose robust sparse dimension reduction method, which is called
(RALMAVE). The RALMAVE has the robustness of RMAVE to the outliers in y and the ability of
adaptive Lasso in oracle VS and consistent parameters estimation. The effectiveness of RALMAVE
is assessed via analysis simulation examples and a real data.

The rest of the article is organised as follows. In Section 2, MAVE and ALMAVE were
reviewed. RALMAVE is proposed in Section 3. The results of the simulation examples are reported
in Section 4. In Section 5, RALMAVE was applied to a logo design data. The conclusions are
summarized in Section 6.

2. A Summary of MAVE and ALMAVE
Suppose that

y = f(xl,xz, ...,xp) + ¢, (1)

where y, x and ¢ are the response, a p X 1 predictor vector and the error variables, respectively.
Assume E (y|x) = f(xl,xz, ...,xp) and E (e |x) = 0. The f(.) is an unknown smooth link function.
For mean function, SDR investigates a subspace S such that

yLE(y|x)|Px, )

where P, is a projection operator. If d is the dimension of S and B = (B4, B, ..., B4) is a basis for
S, x can be replaced with BTx, where d < p. The central mean subspace Sk 1 the intersection
of all subspaces satisfying (2) (Cook and Li, 2002). The MAVE was proposed to estimate Sg, x)-
MAVE can estimate the effective dimension reduction (EDR) directions through

n n

i 2
BB 1, | 22 i~ e+ b B (x = %)) g G
1
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where w;; > 0 are the kernel weights. Iteratively, we can solve the minimization of (3) with
respect to {(a;, b;),j = 1,..,n} and B separately. To improve the accuracy, a kernel weight &@;;
which is a function of BT (x; — x;) can be used.

Note that each estimated EDR directions is a linear combination of all original predictors. As result,
the interpretation of resulting estimates is not ease. The interpretability of the model and the
prediction precision can be improved through the selection of the important covariates. Alkenani
and Yu (2013) proposed ALMAVE by combining the adaptive Lasso penalty with the least square
formulation of MAVE in (3). The estimates of ALMAVE can be obtained by solving

min ZZ[yl {a; + b;"BT (x; — x;)}] a)l]+/1k2w x| Bl (4)

j=1i=

: . ~ 16 .
where {4, > 0,k = 1,...,d} are the tuning parameters. The weights w*;, = 1/|B| ., B is a MAVE
estimate and & > 0. where |. | represents the absolute value. We can solve the minimization of (4)
by a standard adaptive Lasso algorithm. For details, see Alkenani and Yu (2013).

3. Robust SMAVE

3.1.Robust estimation

In the minimization problems (3) and (4), the least-squares criterion is used between y and
f (x4, %5, ..., Xp) to assess how well the model fits. The main drawback of the mentioned least-
squares that it is not robust and sensitive to outliers in y. Cizek and Hardle (2006) employed the
local L- and M- estimation instead of the local least squares to achieve the robustness. The robust
MAVE estimates can be obtained by minimizing

BrTnl;n_l Zzp(% {a; + b, "B"(x; = x))P wyj, (%)

j=1i=

where p(.) is a robust loss function. Let ¥(.) = p(.), where p(.) is the derivative of p(.). The
Huber’s function (Huber, 1981) is a widely used, where ¥ (x) = max[—c,min(c,x)] and ¢
controls the robustness amount. In practice, ¢ = 1.3450¢ is recommended by Huber (1981), where o
is the standard deviation of . Wilcox (1994) pointed out that the Huber’s function is a monotonic
and it gives a consistent estimator of location.

It is well known that M-estimators are sensitive to the high leverage outliers. However, the
chance of appearing the high leverage outliers in a local window in the local linear approximation
of MAVE is less likely. (Yao and Wang, 2013).

3.2. Robust ALMAVE (RALMAVE)

For robust VS adaptive Lasso penalty can be mcorporate into (5),

min
B:BTBZI Zzp(yl {a]+b BT(XL_ X]) )wlj+/1kzw klﬂkl (6)
j=1i=
Noting that p(t) = tp(t)/t, the minimization of (6) can be done through (4) with the
following updated weight

w}‘j=wijW(éij), (7)
Where:
W( U) — (El])

& =y {aL+ b]-TET(Xi - x;)}
- %)
YR Kn{BT(x — X))
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and K,(v) = h"*K(v/h), where K(v) is a kernel function and h is the bandwidth. {B,
(@;,bj),j = 1,...,n} are initial estimators. With the weight w};, the 3(.) controls the robustness.
Also, as in Cizek and Hardle (2006), the algorithm of ALMAVE can be employed here to minimise
(6) by replacing w;; in (4) with wg; in (7).

The following algorithm was proposed to minimize (6)
Algorithm 3.1. For {(y;,x;),i = 1,..,n},

1. Obtain {B, (&,b;),j =1,..,n}in (5).

2. Calculate wj; in (7);

3. Replace w;; by wy; in (4), and update the estimator with ALMAVE algorithm as follows
I.  For given B, update (a;, b;) where j = 1, ...,n, from

n n
i 2
s (S b~ o+ 787 - %)) ®)
j=1i=1
Il.  Foragiven (3 b;),j=1,..,n,solve B
n d
2
min " [y (o + 5,78 (e~ %)} iy + 2 ) 0l ®
j=1i=1 k=1

1. Iterate between (I) and (I1) until convergence in B estimator.

4. Ilterate between 2 and 3 until convergence.

According to our extensive simulations examples, the above Algorithm often converges within 5 to
10 iterations.

3.3. The selection of ¢ value

The parameter c involves o. This o is unknown and we need to estimate it. A robust version
of o is the median absolute deviation (MAD) as
5 Median(|é; — Median(é;)|) (10)

0.675

The amounts 1.345 in ¢ for Huber function can be modified. The more suitable value of c is
the value which makes balance between the robustness to outliers and the efficiency of estimation
(Yao and Wang, 2013).

3.4. Determination of d

In SDR, the issue of estimation d is a very crucial. In this article, a robust version of cross-
validation (RCV) was employed to estimate d. The RCV based on Hampel’s piecewise linear
function (Hample et al., 1986) was used, where the Hampel’s piecewise linear function is

t2/2 lt| <a
alt| — a?/2 a<l|t|]<hb
t) = 11
c—b 6 =¢
For a given dimension k, the CV value can be calculated depending on the estimated B as
n —~
2 ViKn{BT (x; — X;
CVk =n1 Z p (yi _ Z]ily] h;{\T ( l 1)}) (12)
= ZliiKh{B (Xj - Xi)}
After that, the estimated d can be obtained as follows
d= arg min CVj (13)
O<k=<p
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Other robust loss functions such as Huber or Tukey loss functions also can be used. From our
simulation studies, Hampel’s piecewise linear function showed slightly outperforms the others.

4. Simulation studies

The performance of RALMAVE was compared with the performance of SMAVE,
ALMAVE, and RSMAVE through simulation studies. The trace correlation r* which is used in Zhu
and Zeng (2006) was adopted for measuring the estimation accuracy. Let S(A) and S(B) are
columns spaces spanned by two p xd of full rank matrices. P, = A(ATA) AT and Py =

B(BTB)~1BT are projection matrices on S(A) and S(B), respectively. r* = /%tr(PAPB), where,

0 <r* < 1. The true positive rate (TPR) and the false positive rate (FPR) were employed to
measure the ability of the compared methods based on VS. TPR is the ratio of predictors number
which is correctly identified as effective to actual effective predictors number. While, FPR is the
ratio of predictors number which is falsely identified as effective to ineffective predictors number.
The ideal situation is TPR near to to 1 and the FPR near to O at the same time.

An efficient adaptive Lasso algorithm was employed to solve the minimization in (9). A residual
information criterion (RIC) (Shi and Tsai, 2002) was employed to choose A for the adaptive Lasso,

RIC = {n — p(D}og(RSS/{n — p(D}) + p(D{log(n) — 1} + 4/{n —p(D) - 2}, (14)

where, the RSS is sum of squares of residual in the fit of adaptive Lasso, and p(4) is the non-zero
coefficients number. RCV was employed for selection h.
4.1. Direction estimation and VS
The data were generated from:
Bix
0.5+ (1.5 + Bhx)?

y + g, (15)

where,

B = (1,0,...,007, B, = (0,1,0, ...,0)7, and x € R® with d = 2. The settings for x is as follows:
(@) X~N10(019,110) (0) X~N;o(0;0, Z), Where (i, ))t" element of X is 0.5!7J1. The studied
distributions of & were as follows:

Dist.1. N(0,1), the standard normal.

Dist.2. t5/+/3, t-distribution with 3 degree of freedom.
Dist.3. 0.95 N(0,1) + 0.05 N(0,102).
Dist.4. 0.95N(0,1) + 0.05U(—50,50), 95% from standard normal and 5% uniform distribution.

The directions of EDR were obtained through SMAVE, ALMAVE, RSMAVE and
RALMAVE methods. 200 datasets were generated for each sample size n = 100,200, and 400.
The comparison among SMAVE, ALMAVE, RSMAVE and RALMAVE methods was carried out
in Table 1 and 2. To assess the accuracy of estimation, the mean of r* (u(r*)) and standard error of
r* (SE(r*)) were summarized. Also, TPR and FPR were used to check the ability of RALMAVE
in VS.
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Table 1: u(r*), SE(r*), TPR, and FPR for SMAVE, ALMAVE, RSMAVE and RALMAVE in
case of uncorrelated predictors.

Dist. n Criterion SMAVE ALMAVE RSMAVE RALMAVE
w(r*) (SE(r)) 0.876(0.144) 0.881(0.146) 0.850(0.160) 0.855(0.157)

100 TPR 0.853 0.860 0.818 0.823

FPR 0.126 0.123 0.142 0.140

_ u(r*) (SE@r™)) 0.970(0.078) 0.973(0.080) 0.958(0.094) 0.963(0.090)
Dist1 | 200 TPR 0.968 0972 0.958 0.961
FPR 0.062 0.059 0.083 0.081

u(r*) (SE@™)) 0.999(0.007) 0.999(0.006) 0.998(0.005) 0.999(0.005)

400 TPR 1.000 1.000 1.000 1.000

FPR 0.037 0.036 0.052 0.051

1(r*) (SE(r) 0.877(0.151) 0.880(0.150) 0.907(0.129) 0.912(0.125)

100 TPR 0.873 0.875 0.897 0.900

FPR 0.178 0.177 0.159 0.157

u(r) (SE(r)) 0.962(0.089) 0.965(0.088) 0.993(0.033) 0.996(0.032)

Dist2 | 200 TPR 0.960 0.961 0.998 0.1000
FPR 0.092 0.090 0.093 0.090

u(r) (SE(r)) 0.992(0.036) 0.995(0.034) 0.999(0.003) 1.000 (0.002)

400 TPR 0.995 0.998 1.000 1.000

FPR 0.068 0.066 0.083 0.080

u(r™) (SE(r™)) 0.659(0.231) 0.660(0.230) 0.862(0.143) 0.865(0.142)

100 TPR 0.738 0.740 0.820 0.824

FPR 0.407 0.406 0.153 0.150

u(r) (SE(r)) 0.685(0.208) 0.687(0.207) 0.943(0.112) 0.947(0.110)

Dist3 | 200 TPR 0.708 0.709 0.933 0.935
FPR 0.374 0.372 0.088 0.085

w(r) (SE(r)) 0.737(0.209) 0.739(0.208) 0.998(0.007) 1.000 (0.004)

400 TPR 0.755 0.757 1.000 1.000

FPR 0.343 0.340 0.061 0.060

u(r) (SE(r)) 0.451(0.262) 0.454(0.260) 0.837(0.154) 0.841(0.152)

100 TPR 0.683 0.686 0.800 0.805

FPR 0.632 0.630 0.161 0.159

u(r) (SE(r)) 0.389(0.278) 0.393(0.276) 0.958(0.097) 0.961(0.096)

Dista | 200 TPR 0.593 0.596 0.953 0.954
FPR 0.540 0.538 0.075 0.074

1(r) (SE(r)) 0.439(0.279) 0.440(0.279) 0.997(0.021) 0.999(0.017)

400 TPR 0.573 0.575 0.998 0.999

FPR 0.518 0.517 0.066 0.064

Table 2: u(r*), SE(r*), TPR, and FPR for SMAVE, ALMAVE, RSMAVE and RALMAVE in

case of correlated predictors.

Dist. n Criterion SMAVE ALMAVE RSMAVE RALMAVE
u(r*) (SE(r™)) 0.805(0.156) 0.812(0.150) 0.802(0.146) 0.811(0.140)
100 TPR 0.797 0.803 0.792 0.797
FPR 0.164 0.159 0.198 0.194
_ 1) (SE(™) 0.917(0.123) 0.923(0.120) 0.887(0.138) 0.897(0.132)
Dist.1 200 TPR 0.945 0.949 0.902 0.906
FPR 0.101 0.098 0.126 0.123
u(r) (SE(™) 0.975(0.074) 0.980(0.071) 0.969(0.083) 0.977(0.078)
400 TPR 0.998 0.999 0.993 0.997
FPR 0.079 0.077 0.102 0.097
1(r?) (SE()) 0.828(0.148) 0.835(0.143) 0.847(0.145) 0.854(0.140)
100 TPR 0.863 0.868 0.900 0.904
Dist.2 FPR 0.209 0.206 0.239 0.234
: u(r?) (SE(r)) 0.906(0.126) 0.912(0.121) 0.949(0.100) 0.955(0.095)
200 TPR 0.933 0.937 0.985 0.990
FPR 0.139 0.135 0.153 0.150
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u(r*) (SE(@) 0.968(0.082) | 0.973(0.078) 0.995(0.030) 0.999(0.027)
400 TPR 0.990 0.993 1.000 1.000
FPR 0.109 0.104 0.139 0.144

u(r™) (SE() 0.646(0.249) | 0.650(0.246) 0.780(0.141) 0.785(0.138)
100 TPR 0.705 0.709 0.767 0.771
FPR 0.366 0.364 0.203 0.200

u(r*) (SE() 0.710(0.169) | 0.714(0.166) 0.879(0.135) 0.885(0.131)
Dist3 | 200 TPR 0.708 0.713 0.907 0.910
FPR 0.326 0.323 0.153 0.151

u(r™) (SE() 0.756(0.183) | 0.760(0.186) 0.957(0.097) 0.963(0.095)
400 TPR 0.797 0.800 0.993 0.996
FPR 0.306 0.304 0.122 0.121

u(r™) (SE() 0.453(0.273) | 0.458(0.270) 0.788(0.147) 0.793(0.143)
100 TPR 0.693 0.697 0.787 0.790
FPR 0.623 0.620 0.214 0.210

u(r™) (SE() 0.418(0.292) | 0.423(0.289) 0.887(0.131) 0.893(0.127)
Dista | 200 TPR 0.570 0.574 0.927 0.931
FPR 0.509 0.506 0.149 0.146

u(r*) (SE() 0.461(0.281) | 0.465(0.278) 0.967(0.082) 0.972(0.078)
400 TPR 0.630 0.634 0.995 0.998
FPR 0.489 0.487 0.127 0.123

From the results in Table 1 and 2, the following observations were noticed.

1.

For the errors which are follow Dist.1, the performance of RALMAVE is similar to the
performance of ALMAVE and the performance of RSMAVE is similar to SMAVE. Also, the
performance ALMAVE and RALMAVE is better than the performance of SMAVE and
RSMAVE, respectively, based on estimation accuracy and VS.
The ALMAVE and SMAVE were showed some robustness when the errors were followed
Dist.2. But their performance was negatively affected according to estimation accuracy and VS
when the errors follow Dist.3 or Dist.4
For the errors which are follow Dist.2, Dist.3 and Dist.4, the RALMAVE and RSMAVE
performed almost well as they did in the case of Dist.1. according to estimation accuracy and
VS, RALMAVE outperformed the RSMAVE. In addition, RALMAVE also exceeded
ALMAVE, especially when the errors followed Dist.3 and Dist.4. In summary, the proposed
RALMAVE method gave very consistent estimates and it showed good performance in terms of
estimation accuracy and VS for all error distributions considered. Also, the performance of
RALMAVE was the best among all compared methods.

4.2. Estimation of d

The ability of robust CV in (13) was checked for the estimation of d in this section. We

generated the data as in model (15) settings. The value of d was 2. The results in case of the
independent predictors with n = 100 and 200 were reported. For each sample size, 200 datasets
were generated. Table 3 reports the frequency of d out of 200 datasets. The results of L1-based CV
(Cizek and Hardle, 2006) were also reported for the sake of comparison. It is clear that the robust
CV based on Hample loss function gave very consistent estimation for all settings. It did well under
Dist2, Dist3 and Dist4 settings, although a bit worse than those under Distl. The performance of
RCV based on Hample loss function a bit exceeds the performance of L1-based CV for Dist3 and

Dist4.
Table 3: Frequency of d out of 200 datasets
DiSt. n CVHampIe CVLl
d=1 | d=2 |d=3| d=4 |d>=5| d=1 | d=2 | d=3 | d=4 | d>=5

Dist 1 100 10 156 | 33 1 0 7 153 40 0 0
200 1 180 | 19 0 0 4 180 15 1 0
Dist 2 100 13 147 | 37 3 0 9 141 47 3 0
' 200 1 174 | 23 2 0 5 176 19 0 0
Dist3 100 30 100 | 46 16 8 46 91 43 17 3
' 200 3 133 | 51 12 1 16 120 51 10 3
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Dist4. 100 42 98 32 10 18 49 90 46 10 5
200 17 132 | 27 9 15 21 122 32 19 6
5. Logo design (LD) data
The LD data were gathered by Henderson and Cote (1998) to know how LD may impact
consumers’ response to logos. The data contain 22 predictors withn = 195 observations. The
response variable y refers to the logo effect.
1. ALMAVE (Alkenani and Yu, 2013) identified d = 1 direction with 8 important predictors.
To verify RALMAVE, LD were re-analysed by incorporate some outliers in y. 5% of contaminated
observations and an outlier were inserted in the data. The value y; is increased to y; + ¢ and we
report the results for ¢ = 10 and 20.
W reported the number of selected variables (NSV) by ALMAVE and RALMAVE in Table 4. In
addition, we reported corr(B, BaLe) Which is the correlation between f and £, from ALMAVE
without outliers to evaluate the estimation accuracy of RALMAVE.

Table 4: The NSV and corr (B, B4zo) for ALMAVE and RALMAVE methods.

Outliers Y corr(B, Baro)
ALMAVE RALMAVE ALMAVE RALMAVE
No outlier 8 8 1 0.9920
Single outlier (¢ = 10) 9 7 0.9242 0.9911
Single outlier (¢ = 20) 8 7 0.8432 0.9902
5% outliers (c = 10) 16 7 0.3638 0.9910
5% outliers (c = 20) 18 7 0.0653 0.9899

It can be seen that the performance of ALMAVE is very similar to the performance of
RALMAVE for the data without outliers. In case of the data were contaminated with the outliers,
the performance of ALMAVE is dramatically affected. But very consistent results were produced
by RALMAVE, even with 5% outliers.

6. Conclusion

In this article, the RALMAVE method was proposed under SDR settings. The RALMAVE
benefits from the merits of robust VS under SDR settings. The simulation studies indicate that
RALMAVE was better than the SMAVE, ALMAVE, and RSMAVE under different settings. Also,
RCV criterion based on Hample loss function was very efficient in estimating d. The idea of
RALMAVE can be expanded to models with discrete response. For examples, logistic regression
and Poisson regression.
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